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Abstract. When dealing with real-world processes, it is essential to consider their inher-
ent uncertainty to more accurately represent their nature. In this work, we consider cases
in which some information in the log might be unreliable. We propose a novel semantics for
probabilistic process traces, based on the Distribution Semantics from Probabilistic Logic
Programming, which allows one to annotate event executions of an observed trace with a
probability representing the uncertainty of the event as the degree of our belief in that event
happening. Then, we propose a novel definition of probabilistic compliance of a probabilistic
process trace w.r.t. a declarative process specification, and how to compute it using a proba-
bilistic abduction proof-procedure. Experimental results on a real-world healthcare protocol
are presented to evaluate the feasibility of the proposed semantics on conformance checking.

Keywords: Process Mining · Probabilistic compliance · Declarative language · Distribution
Semantics

1 Introduction

In the Business Process Mining (BPM) community [24], the integration of probability into various
aspects of process modeling is a growing research topic, reflecting an interest in enhancing process
analysis under conditions of uncertainty in real-world domains. Uncertainty can be found at various
levels, such as process constraints, events, event attributes, or traces.

For instance, in declarative process mining, [2] introduced the notion of probabilistic process
constraints, by associating probabilities to Declare constraints with a frequency-based approach.
A probabilistic constraint is satisfied over the log if the number of traces satisfying the constraint
over the log cardinality achieves the mathematical relation established by the relational operator
and the probability assigned. A constraint c1 with assigned probability (0.6, ≥) is satisfied if the
number of traces complaint with c1 is at least ≥ 60% of the total traces. They propose how to
discover such constraints and how to carry out monitoring and conformance checking.

In procedural process mining, [6], [15] and [14] handle probabilities at the level of traces or events
in a trace. In [6], traces are supposed generated by a stochastic process model, which outputs a
variety of possible sequences, each associated with a certain probability. Then, probabilistic trace
alignment - i.e. the comparison between the model traces and the observed trace - is done by
identifying the k model traces nearest to a particular observed log trace. [15] defines probability
distributions over all possible realizations of an uncertain trace, where uncertainty may come from
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partial timestamps, indeterminate events, and activity labels. Uncertainty is divided into two types:
strong uncertainty, where the probability distributions of events are unknown, and weak uncertainty,
where events follow known probability distributions. The conformance score is calculated as the cost
of the optimal alignment between the trace and a Petri net model. [14] consider the analysis of a
specific class of event logs, those containing uncertain events, i.e. recordings of executions of specific
activities in a process which are enclosed with an indication of uncertainty in the event attributes.
Specifically, attributes of an event are not recorded as a precise value but as a range or a set of
alternatives, and they perform conformance checking by assessing upper and lower bounds on the
conformance score for possible values of the attributes in an uncertain trace.

Differently from previous work, we propose a novel semantics to handle uncertainty at the level
of events in a trace in a declarative process mining setting. In fact, some information in a process
trace could be unreliable and a domain expert might be allowed to indicate a degree of belief on
that information. Such degree is expressed by an epistemic probability value [20] which may be
associated to an event execution. To better explain the idea, we provide an example based on a real
medical protocol about elective colorectal surgery [23]. In the ERAS® (Enhanced Recovery After
Surgery) guidelines, the administration of preoperative antibiotics is crucial for reducing infection
risks. However, there might be cases where this administration is not logged correctly due to human
error or system issues. For instance, if a surgeon recalls ordering antibiotics for a patient before
surgery but later finds no documentation of this in the medical records, she might estimate, based
on routine practice, interactions with the nursing staff, and protocol recommendations, that there
was a 95% probability the antibiotics were administered as needed. This estimation is not based on
quantitative data but rather on the surgeon’s confidence/belief in her standard procedures.

From a formal point of view, we introduce the concept of Probabilistic Event and Probabilistic
Trace starting from Probabilistic Logic Programming (PLP) and the Distribution Semantics [22].
In a PLP program, logic formulas are annotated with probabilities, defining a probability distri-
bution over normal logic programs called worlds. These probabilities represent the likelihood of
the formulas appearing in a normal logic program. Likewise, the probability of an event is treated
as the probability that such event will appear (or not) in a world, similarly to how scenarios (or
realizations) are treated in [15]. However, we consider uncertainty related to the event as a whole,
without considering event attributes. According to our semantics, all worlds including one such
event "inherit" its probability, while those not including the event take into account the comple-
ment to 1 of its probability. We also tackle the problem of probabilistic conformance checking of a
probabilistic trace with Declare constraints: the conformance score is defined as the sum of the
probabilities of the worlds where the trace is compliant.

This work makes the following contributions: we define a semantics for probabilistic events and
traces in the setting of declarative process specifications, introduce a new concept of compliance,
and show their application to the ERAS® protocol. Then, we exploit previous results, in particular
(i) the mapping provided to Declare in terms of the SCIFF modeling language [13] and (ii)
the extension of the Distribution Semantics to Abductive Logic Programming (ALP) in the SCIFF
framework [3], in order to implement our proposed semantics and compute a compliance probability.

Experiments show that the approach is able to manage a large number of Declare constraints
and probabilistic events.

The paper is organized as follows: Section 2 introduces background on declarative languages and
the distribution semantics, Section 3 presents the proposed semantics, Section 4 describes how we
perform probabilistic compliance. Section 5 describes experimental results and Section 6 concludes
the paper.
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2 Background

2.1 Process Traces and Declare

In the BPM context, the starting point is observing a process execution through the activities
that constitute the process. Each execution, or process instance, is referred to as a trace, with each
activity execution known as an activity instance. Activities are identified by names and typically
marked with a temporal timestamp, establishing an order within the same trace. Traces are often
represented as sequences of activity names, ordered by their timestamps. However, depending on
the context, timestamps can be omitted, as is the case in our approach.

Formally, we assume a finite alphabet of symbols Σ representing the activity names. A trace
and a log then are defined as follows:

Definition 1 (Trace t and Log L). Given a finite set Σ of symbols (i.e., activity names), a trace
t is a finite, ordered sequence of symbols over Σ, i.e. t ∈ Σ∗, where the latter is the infinite set of
all the possible finite sentences over Σ. A log L is a finite set of traces.

In a log of the process, each trace t represents a different process instance. Different process
instances may have the same trace, although referring to different executions. It might make sense
to count the number of appearances of a specific trace. Formally:

Definition 2 (L(·) function). With an abuse of notation, L(·) will be used to indicate also a
function that counts the occurrences of a trace t in the log L.

Example 1. Let us suppose that a process is made of activities a, b, c, and d. Σ = {a, b, c, d}. An
example of a log might be: L = {t1 = ⟨a, b, c⟩, t2 = ⟨a, b, a, d⟩, t3 = ⟨a, a, d⟩, t4 = ⟨a, b, c⟩}.

It holds that: L(t1) = L(t4) = 2,L(t2) = 1,L(t3) = 1.

The Declare modeling language, introduced by [16], counters the inflexibility of procedu-
ral models by focusing on defining key process properties rather than specific execution steps. It
models processes through constraints, rules governing the activities within a trace with qualitative
temporal relations among the activities. For instance, the constraint response(a, b) mandates that
each instance of activity a be eventually followed by b, focusing on what must happen after a in a
forward-looking way. Declare offers a variety of constraint patterns, such as response(x, y), init(x),
requiring every process to start with activity x, and precedence(x, y), ensuring that an activity x
has occurred before an activity y, in a backward-looking way. Declare also provides a graphical
representation for these patterns (see Figure 1) and is based on two different logic formal semantics.

(a) The response template. (b) The init template. (c) The precedence template.

Fig. 1: Examples of the Declare graphical notation: x and y are placeholders that should be
substituted with proper activity names.

In the original formulation in [16] the semantics was given using the LTL temporal logic; sub-
sequent works have shown the feasibility of adopting the LTLf logic [12]: for a recent recap see [7].
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A second formal semantics has been proposed in [13], where the SCIFF language and ALP [1] has
been exploited. Both the semantics exploit the idea that each Declare template can be mapped
onto one or more logic formulas φ, and that logical entailment can be used to define the notion of
compliance/violation of a trace t w.r.t. a constraint formula φ. We provide an intuitive definition
of compliance/violation, where the meaning of the entailment symbol |= should be referred to the
chosen semantics (LTLf or ALP).

Definition 3 (Compliance/violation of a trace versus a constraint). A trace t is compliant
with a Declare constraint if, named φ the corresponding logic formula modelling that constraint,
it holds: t |= φ.

A trace t violates a Declare constraint if it does not entail the corresponding formula φ, i.e.
if t ̸|= φ.

Definition 4 (Declarative Process Specification, from [7]). A declarative process specifica-
tion is a tuple DS=(Rep, Σ,C) where:

– Rep is a finite non-empty set of templates, where each template is a predicate c(x1, . . . , xm) ∈
Rep on variables x1, . . . , xm (with m ∈ N the arity of c);

– Σ is a finite non-empty set of activity names;
– C is a finite set of constraints, obtained by instantiating templates from Rep to Σ; we will

compactly denote such constraints with c(a1, . . . , am), a1, . . . , am ∈ Σ.

Usually the constraints c(a1, . . . , am) in a DS are considered as being in logical conjunction. The
notion of compliance can be then lifted from a trace vs. a constraint towards a trace vs. a DS as
follows:

Definition 5 (Compliance of a trace versus a Declarative Process Specification). A trace
is compliant with a DS if it entails the conjunction of the formulas φi corresponding to the ci ∈ C:

t |= φ1 ∧ . . . ∧ φm

where m is the cardinality of C.

Example 2. Let us consider the log introduced in Example 1, and the following DS (Rep and Σ
are omitted for the sake of simplicity):

C = { c1 = response(a,b)
c2 = init(a) }

Even without considering the corresponding formal semantics, we can notice that t1 and t4 are
compliant with c1; t2 is not compliant with c1 because the second occurrence of activity a is not
followed by an occurrence of activity b; t3 is not compliant with c1 because two occurrences of a
are not followed by an occurrence of b; t1, . . . , t4 are all compliant with c2.

2.2 Distribution Semantics and Probabilistic Logic Programming

Probabilistic Logic Programming (PLP) has recently garnered increasing attention due to its ca-
pability to incorporate probability into logic programming, thereby handling uncertain information
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more effectively. Among the various PLP approaches, the one based on the distribution seman-
tics [22] has become particularly popular, in fact it serves as the foundation for numerous other
languages, including Probabilistic Logic Programs [8], Probabilistic Horn Abduction (PHA) [18], In-
dependent Choice Logic (ICL) [17], pD [10], Logic Programs with Annotated Disjunctions (LPADs)
[26], ProbLog [9] and CP-logic [25]. Such semantics is particularly appealing for its intuitiveness
and because efficient inference algorithms were proposed.

A program in one of these languages defines a probability distribution over normal logic programs
called worlds. We consider here the case of the distribution semantics for programs that do not
contain function symbols (i.e., they have a finite set of worlds) for the sake of simplicity; for the
treatment of function symbols see [21]. A survey of the distribution semantics in PLP can be found
in [4]. In the following, the distribution semantics will be described with reference to LPADs.

Formally, a LPAD consists of a finite set of "annotated disjunctive clauses", where the head is a
disjunction in which each atom is annotated with a probability. If the body holds true, only one of
the atoms in the head will be true with the associated probability. An annotated disjunctive clause
Ri is of the form

hi1 : pi1; . . . ;hini : pini :− bi1, . . . , bimi ,

where hi1, . . . , hini
are logical atoms and {pi1, . . . , pini

} are real numbers in the interval [0, 1] such
that

∑ni

k=1 pik ≤ 1; bi1, . . . , bimi is indicated with body(Ri). If
∑ni

k=1 pik < 1, the head implicitly
contains an extra atom null that does not appear in the body of any clause and whose annotation
is 1−

∑ni

k=1 pik. We denote by ground(T ) the grounding of an LPAD T .
An atomic choice [17] is a triple (Ri, θj , k) where Ri ∈ T , θj is a substitution that grounds Ri

and k ∈ {1, . . . , ni} identifies one of the head atoms. (Ri, θj , k) means that, for the ground clause
Riθj , the head hik was chosen. A set of atomic choices κ is consistent if only one head is selected
from the same ground clause; we assume independence between the different choices. A composite
choice κ is a consistent set of atomic choices [17]. The probability P (κ) of a composite choice κ is
the product of the probabilities of the independent atomic choices, i.e. P (κ) =

∏
(Ri,θj ,k)∈κ pik.

A selection σ is a composite choice that, for each clause Riθj in ground(T ), contains an atomic
choice (Ri, θj , k). Let us indicate with ST the set of all selections. A selection σ identifies a normal
logic program wσ defined as wσ = {(hik ← body(Ri))θj |(Ri, θj , k) ∈ σ}. wσ is called a (possible)
world of T . Since selections are composite choices, we can assign a probability to worlds: P (wσ) =
P (σ) =

∏
(Ri,θj ,k)∈σ pik.

We denote the set of all worlds of T by WT . P (WT ) is a probability distribution over worlds,
i.e.,

∑
w∈WT

P (w) = 1. A composite choice κ identifies a set of worlds wκ = {wσ|σ ∈ ST , σ ⊇ κ}.
Similarly we can define the set of possible worlds associated to a set of composite choices K:
WK =

⋃
κ∈K wκ.

Example 3. Consider the following LPAD T encoding the effect of flu and hay fever on the sneezing
symptom.

(R1) strong_sneezing(X) : 0.3;moderate_sneezing(X) : 0.5 : −flu(X).
(R2) strong_sneezing(X) : 0.2;moderate_sneezing(X) : 0.6 : −hay_fever(X).
(R3) flu(bob).
(R4) hay_fever(bob).

If somebody has the flu or hay fever, there is the possibility that he experiences sneezing symptoms
with different intensity: if she has the flu, then she might show strong sneezing with probability 0.3,
or moderate sneezing with probability 0.5; similarly for the second clause. She might not experience
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any symptom with probability 0.2 in both cases. We know for sure that Bob has both the flu and
hay fever. T has 3 · 3 = 9 worlds, as each probabilistic clause has one grounding θ1 = {X/bob}.
Worlds are shown in Table 1.

Table 1: Worlds for Example 3. The probabilities of the worlds sum up to 1.
World id World P (w)

w1

strong_sneezing(bob):-flu(bob).
strong_sneezing(bob):-hay_fever(bob).
flu(bob). hay_fever(bob).

0.3×0.2 = 0.06

w2

strong_sneezing(bob):-flu(bob).
moderate_sneezing(bob):-hay_fever(bob).
flu(bob). hay_fever(bob).

0.3×0.6 = 0.18

w3
strong_sneezing(bob):-flu(bob).
flu(bob). hay_fever(bob). 0.3×0.2 = 0.06

w4

moderate_sneezing(bob):-flu(bob).
strong_sneezing(bob):-hay_fever(bob).
flu(bob). hay_fever(bob).

0.5×0.2 = 0.1

w5

moderate_sneezing(bob):-flu(bob).
moderate_sneezing(bob):-hay_fever(bob).
flu(bob). hay_fever(bob).

0.5×0.6 = 0.3

w6
moderate_sneezing(bob):-flu(bob).
flu(bob). hay_fever(bob). 0.5×0.2 = 0.1

w7
strong_sneezing(bob):-hay_fever(bob).
flu(bob). hay_fever(bob). 0.2×0.2 = 0.04

w8
moderate_sneezing(bob):-hay_fever(bob).
flu(bob). hay_fever(bob). 0.2×0.6 = 0.12

w9 flu(bob). hay_fever(bob). 0.2×0.2 = 0.04

Given a goal G, its probability P (G) can be defined by marginalizing the joint probability of
the goal and the worlds:

P (G) =
∑

w∈WT

P (G,w) =
∑

w∈WT

P (G|w)P (w) =
∑

w∈WT :w|=G

P (w) (1)

The probability of a goal G given a world w is P (G|w) = 1 if w |= G and 0 otherwise. P (w) =
P (wσ) = P (σ), i.e. is the product of the annotations pik of the atoms selected in σ. Therefore,
the probability of a goal G can be computed by summing the probability of the worlds where the
goal is true. In practice, given a goal to solve, it is unfeasible to enumerate all the worlds where G
is entailed. Inference algorithms, instead, find explanations for a goal: a composite choice κ is an
explanation for G if G is entailed by every world of wκ. In particular, algorithms find a covering set
of explanations w.r.t. G, where a set of composite choices K is covering with respect to G if every
program wσ ∈WT in which G is entailed is in wK .

3 Probabilistic Process Traces under the Distribution semantics

In this Section, we propose a new semantics for handling uncertainty at the level of event executions,
that is highly inspired by the Distribution Semantics introduced in Section 2.2.

The motivation behind this proposal relies in the fact that in certain domains it might not be
possible to completely observe the evolution of a process instance; as a consequence, there is no
certainty of the happening of some events in the observed trace. However, due to the domain’s
characteristics, it may be the case that some events happened with a certain probability. Such
probability can be interpreted as an epistemic probability, i.e. as the degree of our belief in that
event, as done in [20],[19].
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Example 4. In a hospital department the log of the patients’ events is usually updated by healthcare
professionals. They might forget to log one or more events. A probabilistic trace would take in
consideration the fact that, even if not logged, some events might have happened with a probability
p. The trace:

t = ⟨0.7 : check_fever, drug_prescription, check_fever, 0.95 : check_fever, dimission⟩

describes the situation where the healthcare professional logged only the second event (drug_prescription),
the third event (check_fever), and the fifth event (dimission). Two events of type check_fever were
not logged, however it is probable that they happened anyway due to the patient’s disease and
treatment. In these cases we have a degree of belief 0.7 and 0.95 respectively in the occurrence of
those events, i.e. we believe that those events happened with that probability.

We propose to deal with this scenario by applying the Distribution Semantics as follows.

Definition 6 (Probabilistic Event). A Probabilistic Event is a couple:

Prob : EventDescription

where EventDescription is a symbol describing an event (EventDescription ∈ Σ), while Prob ∈ [0, 1] is
the epistemic probability that the event happened. A probability value of 1 means the event happened,
and we will refer to it as "certain"; for ease of reading such probability will be omitted.

For the sake of simplicity, we will adopt the notation Prob : Ei indicating that the generic event E
appearing in the i-th position in the trace has a degree of belief Prob.

Definition 7 (Probabilistic Trace). A Probabilistic Trace is a trace where at least one event is
probabilistic.

Recalling the Distribution Semantics, for each probabilistic event we can make an atomic choice,
which determines whether a probabilistic event appears or not in the trace.

Definition 8 (Atomic choice and Composite choice). An Atomic Choice is a pair (Ei, k)
where Ei is a probabilistic event E appearing in the i-th position in a probabilistic trace and k ∈ {0, 1}.
k indicates whether Ei is chosen to be included in a world with probability pi (k=1), or not with
probability 1− pi (k=0). We assume independence between the different atomic choices.

A Composite Choice κ(t) is a consistent set of atomic choices over probabilistic events in t,
i.e., (Ei, k) ∈ κ(t), (Ei,m) ∈ κ(t) ⇒ k = m (only one decision for each probabilistic event). The
probability P (κ) of a composite choice κ is P (κ) =

∏
(Ei,1)∈κ pi

∏
(Ei,0)∈κ(1 − pi), where pi is the

probability associated with Ei.

Note that here we do not need the substitution θ as in the definition of atomic choice in subsection
2.2, since, according to Def. 1, the events are ground.

Definition 9 (Selection over a trace t). A Selection σ(t) over a probabilistic trace t is a com-
posite choice containing an atomic choice (Ei, k) for each probabilistic event in the trace t.

A selection σ(t) identifies a world wσ in this way: wσ = {Ei|(Ei, 1) ∈ σ}.
Let us indicate with S(t) the set of all selections and with W (t) the set of all worlds.
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Example 5 (continued from previous). Given the trace t:

t = ⟨0.7 : check_fever1, drug_prescription2, check_fever3, 0.95 : check_fever4, dimission5⟩

where we explicitly add a pedix for each event due to the multiple appearance of the check_fever
activity, the set S(t) of possible selections σ(t) is:

σ1(t) = {(check_fever1, 1), (check_fever4, 1)}
σ2(t) = {(check_fever1, 1), (check_fever4, 0)}
σ3(t) = {(check_fever1, 0), (check_fever4, 1)}
σ4(t) = {(check_fever1, 0), (check_fever4, 0)}

The set W (t) of possible worlds w(t) is:

wσ1(t) = ⟨check_fever1, drug_prescription2, check_fever3, check_fever4, dimission5⟩
wσ2(t) = ⟨check_fever1, drug_prescription2, check_fever3, dimission5⟩
wσ3(t) = ⟨drug_prescription2, check_fever3, check_fever4, dimission5⟩
wσ4(t) = ⟨drug_prescription2, check_fever3, dimission5⟩

Note that certain (non probabilistic) events always appear in the generated worlds.

Definition 10 (Probability of a Selection). The probability of a selection σ(t) is defined as:

P (σ(t)) =
∏

(Ei,1)∈σ(t)

pi
∏

(Ei,0)∈σ(t)

(1− pi)

The probability of a selection corresponds to the probability of a world wσ, i.e. P (wσ(t)) = P (σ(t)).

The probability of a world is obtained by multiplying the probabilities associated to each alternative
(presence or absence of an event) as these are considered independent of each other. This gives a
probability distribution P (w(t)) over the worlds, i.e.

∑
w(t)∈W (t) P (w(t)) = 1.

Example 6 (continued from previous).
The trace t has four worlds, corresponding to the selections listed in Example 5, and their

probabilities are:

P (σ1(t)) = P (wσ1(t)) = 0.7 ∗ 0.95 = 0.665

P (σ2(t)) = P (wσ2(t)) = 0.7 ∗ (1− 0.95) = 0.035

P (σ3(t)) = P (wσ3(t)) = (1− 0.7) ∗ 0.95 = 0.285

P (σ4(t)) = P (wσ4(t)) = (1− 0.7) ∗ (1− 0.95) = 0.015

Note that 0.665+0.035+0.285+0.015=1.

Example 5 allows us to highlight some characteristics of the semantics proposed in this paper.
First of all, thanks to the notion of world, we started from a probabilistic trace, and ended up with
a set of regular (non-probabilistic) traces, that correspond to the worlds wσi(t).
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4 Probabilistic Compliance

In this Section we will define the notion of compliance of a probabilistic trace w.r.t. a Declarative
Process Specification. Given a model M and a notion of compliance of a trace t w.r.t. M , we
can extend this notion to a probabilistic trace by considering the compliance of each world wσ(t)
generated by a trace, and by summing up the probabilities of the worlds compliant with M .

Definition 11 (Compliance of a probabilistic trace). Given a model M , a probabilistic trace
t, and a set S(t) of all the selections σi(t), we define the compliance Comp(M,t) of a probabilistic
trace t w.r.t. M as the sum of the probabilities of the worlds wσi(t) for which the compliance function
returns true.

Comp(M, t) =
∑

w(t)∈W (t)

{
P (w(t)) if w(t) is compliant with M,

0 otherwise.

Example 7 (continued from previous). Suppose we have a model M that prescribes that before any
drug_prescription, a check_fever must be executed. Only worlds wσ1(t) and wσ2(t) are compliant
with the prescribed model. Hence:

Comp(M, t) = P (wσ1(t)) + P (wσ2(t)) = 0.665 + 0.035 = 0.7

We will say that t is compliant w.r.t. model M with a probability of 0.7.

Definition 12 (Compliance of a log with probabilistic traces). Given a model M and a
log L with probabilistic traces ti, we define the compliance of a log with probabilistic traces as the
weighted sum of the compliance of ti, where where L(ti) counts the occurrences of trace ti in the log
L (see Def. 2).

Comp(M,L) =
∑
ti∈L

L(ti)
|L|

∗ Comp(M, ti)

We might observe that, w.r.t. Def. 5, we move forward from a crisp boolean concept towards a
degree of compliance: this is an expected consequence of introducing probabilities in the traces’
events. The proposed semantics accommodates for both probabilistic and non-probabilistic traces:
the latter are treated as traces with only certain events as usual in Process Mining, and the derived
worlds wσi

will always contain them.

5 Implementation and Evaluation

In this Section we describe how we compute the compliance of a probabilistic trace w.r.t a Declar-
ative Process Specification, by means of the framework implemented in [5]. This framework en-
ables reasoning on ALP programs that incorporate "integrity constraints" (ICs) à la IFF [11],
extended with the possibility of annotating them with a probability. The programs, known as
IFFProbprograms, define a probability distribution over IFF programs based on the distribution se-
mantics. IFFProb is based on the SCIFF proof-procedure [1]. In [5], the IFF sub-language is extended
with a CHR constraint that represents the current explanation with its probability in the current
derivation branch. Here, expl is a set of pairs (ci, k), where ci represents a (possibly) probabilistic
integrity constraint and the Boolean value k determines whether ci is included in expl.
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To perform the experiments, firstly we described, in the CLIMB language [13], a Declare pro-
cess model for elective colorectal surgery based on the ERAS® (Enhanced Recovery After Surgery)
Society guidelines for perioperative care [23]. The model comprises 21 constraints regarding cru-
cial perioperative events, from patient admission to post-surgery recovery. CLIMB (Computational
Logic for the Verification and Modeling of Business constraints) is a rule-based language which
employs forward rules to bind event occurrences with expected courses of interaction. An event ex-
ecution status is denoted as happened (H), expected (E), or forbidden (though forbidden activities
are not considered here). For example, the fact that an atomic activity a has happened at time T
can be denoted by H(exec(a), T ), while E(exec(a), T ) states that a is expected to occur at time T .
Being the body of integrity constraints universally quantified with scope the entire rule, every time
a group of event occurrences makes its body true, then the rule triggers, generating the expectations
contained in the head. An excerpt of our model is:

true→ E(exec(program_admission), 0). (ic1)
H(exec(program_admission), T1)→ E(exec(counseling), T2) ∧ T2 > T1. (ic2)

Integrity constraint ic1 specifies that the process must always start with the event program admission
of the patient, occurring at time 0 (init template). ic2 represents the response constraint, indicating
that whenever a program admission happens, the pre-operative counseling (patient education) must
eventually follow at a time T2 later than T1.

Secondly, we made one or more events probabilistic in a process trace by relying on the same
syntax used for the constraints. Every event is represented as a happened (H) event in the head
of a rule with body true, so that the head is always enacted. This is enabled by the SCIFF-lite
extension [13], where the head of the IC may include happened events. To assign a probability p to
uncertain events, we place p :: before the rule. An example of an execution trace composed of both
certain and probabilistic events is the following:

true −→ H(event(program_admission), 0).
0.75 :: true −→ H(event(counseling), 5).
0.95 :: true −→ H(event(fasting), 80).

We created a process trace using 21 events, each one corresponding to a different activity provided
by the protocol. Of these, we decided to keep the main three as certain given their meaning:
program_admission, start_surgery, and end_surgery, while all the remaining events were kept
as certain or were assigned a probability value of 0.5, representing the degree of belief associated
with each event’s occurrence (see in the following for more details). For our purposes, there is no
difference in associating 0.5 or any other probability value.

We ran two scalability tests to evaluate how the execution time for computing the probability of
compliance of a probabilistic trace w.r.t a DS scales, (a) by increasing the number of probabilistic
events (PEs) in the trace, given a fixed number of ICs, or (b) by increasing the number of ICs in
the model, given a fixed number of probabilistic events.

Tests were executed on a Linux machine equipped with an Intel® Xeon® E5-2630v3 processor,
at 2.40 GHz, 20 GB of RAM and a maximum execution time of 8 hours for each job. In test (a),
the number of probabilistic events in the trace was increased from 1 to 18 at steps of 1, while the
number of ICs was increased in multiples of 3, from 1 to 12. Starting from 13 ICs, constraints were
added at steps of 1 up to 21 ICs, in order to identify the configurations leading to timeout. Here, the
"larger" configuration (in terms of number of ICs + number of PEs) reaching timeout was 13 ICs
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Fig. 2: Execution time for computing the compliance of a probabilistic trace against a Declarative
Process Specification, with varying probabilistic events (a) and ICs (b). Dashed curves indicate that
the T.O. was reached.

and 18 PEs. Results are shown in Fig. 2a. In test (b) the number of PEs was increased in multiples
of 3, from 1 up to 9, then at steps of 1 from 10 to 18. The number of ICs was increased from 1 to
21 at steps of 1. The larger configuration that led to timeout was the one with 10 PEs and 21 ICs.
Figure 2b illustrates the results.

In both cases the framework is able to manage a remarkable number of PEs and constraints
in the model at the same time, even if it shows an exponential trend in execution times as the
number of constraints or of probabilistic events increases. In particular, it is able to compute the
compliance probability within about one minute with, for instance, 4 PEs and 15 ICs, or 9 PEs
and 12 ICs, 11 PEs and 9 ICs, 13 PEs and 6 ICs (plus the 3 main certain events in all cases). We
also computed, for case (a), the number of explanations generated (see Table 2), which initially
grows exponentially with few ICs and increasing number of probabilistic events, and then becomes
constrained as more ICs need to be fulfilled. The exponential number of explanations results from
each probabilistic event having two atomic choices, present or absent, in a world.

6 Conclusions and Future Work

In this paper, we introduced a new semantics for handling uncertainty at the level of events in
declarative process traces. A probabilistic trace is able to incorporate probabilistic events where
the probability represents the degree of belief in such events. The semantics is inspired by the
Distribution Semantics from Probabilistic Logic Programming. We then propose to compute the
compliance probability of a probabilistic trace against a Declare process model. The computation
of the compliance relies on an existing algorithm. Tests show that, even if the execution time
increases exponentially with additional probabilistic events and constraints, the approach used is
able to manage combinations of a large number of model constraints and probabilistic events.
Future research will focus on expanding experimental validation, extending the new semantics to
manage uncertainty at the level of traces or the log itself, defining the compliance of probabilistic
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Table 2: N. of explanations corresponding to each experiment of test (a). "T.O." indicates that the
execution timed out.

Number of Probabilistic Events
#IC 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144
3 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072
6 1 2 4 8 8 8 8 16 32 64 128 256 512 1024 2048 4096 8192 16384
9 1 1 1 1 1 1 1 2 4 8 16 32 64 128 256 512 1024 2048
12 1 1 1 1 1 1 1 1 1 1 2 4 8 16 32 64 128 256
13 1 1 1 1 1 1 1 1 1 1 1 2 4 8 16 32 64 T.O.
14 1 1 1 1 1 1 1 1 1 1 1 1 2 4 8 16 32 T.O.
15 1 1 1 1 1 1 1 1 1 1 1 1 2 4 8 16 T.O. T.O.
16 1 1 1 1 1 1 1 1 1 1 1 1 1 2 4 T.O. T.O. T.O.
17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 T.O. T.O. T.O.
18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 T.O. T.O. T.O. T.O.
19 1 1 1 1 1 1 1 1 1 1 1 1 T.O. T.O. T.O. T.O. T.O. T.O.
20 1 1 1 1 1 1 1 1 1 1 T.O. T.O. T.O. T.O. T.O. T.O. T.O. T.O.
21 1 1 1 1 1 1 1 1 T.O. T.O. T.O. T.O. T.O. T.O. T.O. T.O. T.O. T.O.

trace(s) w.r.t probabilistic Declare models, and studying the profiles of energy consumption when
computing the probability of compliance.
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