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Abstract. Recent works on Large Language Models (LLMs) have demon-
strated their effectiveness in learning general policies in automated plan-
ning. In particular, a system called PLANGPT has achieved impressive
performance in terms of coverage in various domains. However, it may
produce invalid plans that either satisfy only some goal fluents of the
corresponding planning problem or violate the planned actions’ precon-
ditions. To overcome this limitation, we propose a novel neuro-symbolic
approach that combines PLANGPT with a planner capable of repairing
(or completing) the plan generated by PLANGPT, thereby leveraging
model-based reasoning. When PLANGPT generates a candidate plan for
a specific planning problem, we validate it using a symbolic validator.
If the generated plan is invalid, we execute the repair procedure of the
planner LPG to obtain a valid solution plan from it. In this paper, we
empirically evaluate the effectiveness of our approach and demonstrate
its performances across various planning domains. Our results show sig-
nificant improvements in the performance of both PLANGPT and LPG,
highlighting the effectiveness of combining learning methods with tradi-
tional planning techniques.

1 Introduction

Attention-based architectures such as Transformers [33], BERT [4], and GPT [17]
have driven recent advancements in Natural Language Processing (NLP). These
models have achieved impressive results in machine translation and summarisa-
tion and have shown promise in understanding factual knowledge and common
sense [7,12,16,24]. However, their reasoning abilities, especially for planning
tasks, remain limited [1,30,32]. Current prompting methods and fine-tuning
Large Language Models (LLMs) struggle to generate valid plans for automated
planning problems [1, 14, 15, 32].

More promising results were obtained by PLANGPT [20, 21|, a novel GPT-
based model specifically trained to generate plans for classical planning domains.
However, a limitation of this system is that it cannot correct invalid plans at
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generation time (plans with unsatisfied preconditions or unachieved goals), re-
turning in these cases an incorrect solution for the planning problem.

As other machine learning models [2,3,8], PLANGPT is able to learn a
general policy which can be used to solve many planning problems. However,
they can be also used in combination with a planner: in the work of [29] general
policies are exploited as heuristics by planners; in the work in [31] instead a
LLM-generated plans are subsequently corrected by a planner. Following these
works, in this paper we combine PLANGPT with the LPG planner [6] to address
invalid or incomplete plans that may arise during generation. By integrating
learning and model-based techniques, our aim is to improve the reliability and
accuracy of plan generation by LLMs.

2 Related work

Recent works have studied and analysed the capabilities of LLMs in planning
and reasoning in the last few years. In [1, 30], the authors showed how pre-trained
GPT models (GPT-3.5 and GPT-4) can be used to generate plans starting from
the problem description without a customised training. Unfortunately, their re-
sults highlight that pre-trained LLMs often fail to generate correct plans, even
with a neural validator that checks the executability of the actions.

In [14, 15], the authors fine-tuned a Code-T5 model [34] with solved problems
in several planning domains obtaining a new model, Plansformer. This model
showed interesting results, producing more valid plans than the prompting ap-
proach in various domains limited in the number of objects. These approaches
use an LLM to generate a plan given the initial state, the goal, and the do-
main description as input, similar to the context of general policies. The main
difference from our approach is that we train GPT from scratch with a custom
dataset of planning instances.

In another line of work, researchers have exploited different deep-learning
architectures to learn general policies. Instead of generating the sequence of
actions, these systems compute a heuristic for all the states reachable by appli-
cable actions, starting from the current state and the goal. For instance, in [27,
28|, authors proposed a Graph Neural Network (GNN) to address the problems
in various benchmark domains. Following this work, the authors tried to inte-
grate the learnt general policies with a greedy first search, obtaining a learned
domain-specific planner called Muninn [29]. A similar work was presented in |2,
3, 8] where the authors use GNNs with other graph representations, ranking of
the search state and machine learning methods to compute different heuristics.

These approaches produce a numeric heuristic that evaluates the current
state and guides the search, and must be continually called upon by the planner.
Instead, in our approach, the model directly generates the sequence of actions.
For example, in [31], a pre-trained LLM generates a candidate plan that is given
as the initial seed to a plan repair system. However, a crucial difference to our
work is that the generated plan is provided as input to the planner without any
modification.
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Instead of using pre-trained LLMs, an initial experiment to train a Language
Model from scratch, in the automated planning context, is available in [23]. More-
over, recently we proposed PLANGPT [20, 21], a general policy based on the GPT
architecture trained from scratch on a dataset of planning instances. PLANGPT
obtains SoTA performances in generating valid plans in various benchmark do-
mains. However, PLANGPT can generate invalid or incomplete plans that violate
an action or do not satisfy the goal. In this paper, to address this limitation, we
integrate PLANGPT with a plan repair planner, LPG, to correct invalid plans
using different candidate plan initialisations.

3 Background: Classical Planning, GPT and PLANGPT

3.1 Classical Planning

Following the formalisation presented in [20] to represent deterministic, fully ob-
servable planning problems, a classical planning problem is a pair P = (D, I)
where D is a planning domain and [ is a problem instance. More specifically, D
contains a set of predicate symbols p and a set of action schemas with precon-
ditions and effects given by atoms p(z1, ..., k), where each x; is an argument of
the schema; I is a tuple I = (O, Init, Goal), where O is a (finite) set of objects
names ¢;, and Init and Goal are sets of ground atoms p(cy, ..., ;) represent-
ing the initial state and the goal of the problem. A classical planning problem
P = (D, I) encodes a state model S(P) = (5, sg, S¢, Act, A, f) where each state
s € S is a set of ground atoms from P, sq is the set of fluents of the initial state
Init, Sg is the set of goal states s € S such that Goal C s, Act is the set of
ground actions in P, A(s) is the set of ground actions whose preconditions are
true in s, and f is the transition function so that f(a,s), for a € A(s), repre-
sents the state resulting from applying action a to state s. An action sequence
ag, ..., an is applicable in P if a; € A(s;) and s;41 = f(ai, 8;), for i = 0,...,n,
and it is a solution plan if 5,41 € Sg. The plan cost is assumed to be its length;
therefore, a plan is optimal if no shorter plan exists.

A plan validator [10] is a reasoning tool that, given a domain, a problem
instance, and a plan, validates whether the plan solves the problem. The val-
idator checks the applicability of each plan action a; by verifying the truth of
its preconditions in the current state s; (a; € A(s;)), and progresses s; t0 S;4+1
(si+1 = f(ai,s;)). If an action violates the preconditions (a; ¢ A(s;)), then the
validator terminates returning an invalid plan. Otherwise the validator verifies
whether the last state of the plan reaches the problem goal (s;1+1 € Sg); in that
case, it returns the generated plan as a solution plan, or the invalid plan.

Generalised planning studies the representation and computation of general
policies to solve multiple problems in the same planning domain [11,25, 26].
A general policy can be defined as a function 7w (Init,Goal,ayg,...,a;—1) that
provides the next action in Act to apply given the initial state Init, the goal
Goal of the problem instance and the list of ¢ actions previously obtained by m
auto-regressively. A policy m solves a set of classical planning instances for the
same domain D if each of these instances I = (O, Init, Goal) is solved by the
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sequence of actions A, = (ay,...,a;) obtained by applying auto-regressively ,
ie. ag = (Init,Goal), a1 = (Init,Goal,agy), as = (Init,Goal,ap,ay) ..., a; =
(Init,Goal, a;_1).

3.2 Generative Pretrained Transformer (GPT)

In this section, we briefly introduce the architecture of GPT, the neural compo-
nent of PLANGPT and how it works. A GPT model [17, 18] is the decoder stack
of the Transformer architecture [33] developed to generate sequences of elements
for NLP tasks. We selected the smallest GPT-2 version because it is the latest
open-source version of GPT and, requires less training data and fewer compu-
tational resources for training than bigger versions. This model completes the
sentence given as input, known as prompt, with the most likely next words. The
completion process continues step-by-step, appending the generated word to the
input and outputting the most likely next word. In our example, given the input
“Rome is the capital”, GPT predicts the following words “of” and “Italy”. The
main component of GPT-2 is the attention mechanism. This neural component
tries to correlate each couple of tokens in the prompt to extract the various rela-
tionships between the sentence, obtaining a meaningful semantic of the prompt
to generate the most valuable token. This generation process requires a prelim-
inary tokenization step using a tokenizer, in this case, WordPiece [4], mapping
the words in the prompt into individual words or word fragments called tokens.

More formally, this strategy is the standard strategy of GPT called greedy
decoding. At each step, the model takes the prompt as input and outputs
the token with the highest probability from the vocabulary (adding it to the
prompt). This generation has the issue of producing less varied outputs, as it
always selects the most probable token greedily without exploring other tokens.
Another method called top-p sampling addresses these limitations. In top-p
sampling, instead of always selecting the token with the highest probability, the
model creates a reduced set of tokens at each step and then randomly samples the
next one from the probability distribution over this reduced set. At each step,
the strategy cumulatively sums the probabilities of the tokens in descending
order until the sum exceeds a threshold p. This token selection ensures that only
the most likely tokens, which account for a probability mass of at least p, are
considered for sampling.

3.3 PLANGPT

In our previous work, PLANGPT [20], we trained from scratch the architecture
of GPT-2 on a customised planning dataset, following the idea that LLMs could
understand the grammar and solve a planning problem as shown by [5]. In the
context of general policies, after training, PLANGPT can solve complex planning
problems similar to those from the International Planning Competition (IPC),
achieving state-of-the-art performance across various classical planning domains
using the top-p sampling generation.
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PLANGPT receives in input a set of fluents representing the initial state
and the goal of a planning and has to compute a plan to solve a problem. In
order to do that, it has to predict sequentially all the actions of a plan as if
they were words. Mapping fluents and action into words is done through the
tokenization. During tokenization, we split each fluent (and each action) into its
components, the fluent (or action) name, and its associated objects. For example,
for fluent (At Truckl Locl) we have three tokens: At, Truckl and Locl; for
action (Drive Truckl Locl Loc3), four tokens: Drive, Truckl, Locl and Loc3.
After training, given as input the fluents of the initial state and the goal of a
problem, PLANGPT generates the solution plan by generating the next token
(the action name or the object name) in an auto-regressive mode with different
generation strategies.

At the end of the generation, the validator unites the tokens into actions. Fi-
nally, the validator checks the validity of the plan. However, a current limitation
of our approach is that if an action fails due to a violation of a precondition or
the plan does not satisfy the goal, the plan is considered invalid by the validator,
and PLANGPT cannot correct it.

3.4 Local search for Planning Graphs

The standard method for solving classical planning problems is the use of a plan-
ner. A planner is a system that addresses planning problems without leveraging
particular domain properties or biases, but using only the domain definition and
search methods. Given as input the domain description D and the problem I,
a planner will produce a plan to solve the problem I. In literature, numerous
planners such as LAMA [19], Fast-Downward [9] and LPG [6] exploit different
kinds of heuristics and search to solve automated planning problems. In this
work, we consider using the Local search for Planning Graphs (LPG) [6] as it
offers the possibility of plan repair and completion.

The basic search scheme of LPG was inspired by Walksat [13], an efficient
procedure to solve SAT problems. The search space of LPG consists of action
graphs, particular sub-graphs of the planning graph representing partial plans.
The search steps are graph modifications, transforming an action graph into
another one. LPG exploits a compact representation of the planning graph to
define the search neighbourhood and to evaluate its elements building relaxed
planning graphs. This is achieved by an anytime process that produces a sequence
of plans, each of which improves the quality of the previous ones.

In addition to generating a plan from scratch, LPG offers a plan repair
solution: starting from an invalid or incomplete plan LPG solves the problem
by leveraging the knowledge in that plan and correcting it.

4 PLANGPT seed as input of LPG

The main contribution of this work is integrating the LPG planner in the gener-
ation phase of PLANGPT. Given that PLANGPT has the potential to generate
invalid plans, we use the LPG repair plan option to correct these invalid plans.
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Fig. 1. Example of input/output for a planning problem with two fluents in the initial
state (So and S1) and two fluents (Go and G1) forming the goal. PLANGPT generates
the plan Ai, ..., A4. The validator verifies the correctness of the candidate plan and,
if it finds it invalid, generates the partial and complete seeds. Then LPG generates a
valid plan using the seed with the repair option.

Starting from an already generated plan, instead of an empty seed as usual,
LPG can compute an action graph from the current invalid plan that corrects
inconsistencies and improves the quality of the final solution, reducing the search
time required and exploiting the knowledge in the generated plan.

The proposed architecture includes a neural system, PLANGPT, which pro-
duces a plan (valid or not), a symbolic validator that can check its validity, and
LPG that can repair it. We refer to this combined system as R-PLANGPT.

Following Figure 1, the generation process of the system starts from the
component PLANGPT, which takes the initial state and goals as input and
generates a candidate plan. In this example, given the fluents Sy and S7 and the
goal fluents G; and Go, PLANGPT generates a plan composed of 4 actions: Ay,
Ay, Az, A4. Then, the symbolic validator checks the actions’ validity and the
satisfaction of the goal. In the example, the validator analyses the actions Aj,
Ay, Az, Ay, discovering that the action As is invalid.

We implement two strategies to create the LPG candidate seed: the partial
seed, where the validator discards some actions from the original generated plan,
or the complete seed, where LPG takes as input the whole generated plan.

In the partial seed, if the plan has an action that violates a precondition,
the validator prunes all the actions from the violation, obtaining the candidate
plan. Instead, suppose the plan has no preconditions’ violations. In that case,
the validator produces the candidate plan by selecting all the actions up to the
last one that satisfies the problem’s last solved goal. Furthermore, the validator
checks the presence of loops in the candidate plan computed, i.e. sequences
of actions that repetitively reach the same state without progressing towards
the goals, and removes them. The idea is to provide LPG with a correct initial
candidate plan to complete that satisfies various goal fluents and does not provide
any violated preconditions or loops. In Figure 1, for the partial seed, since action
Ajz is invalid, the validator prunes actions Az, A4 and produces the candidate
plan Ay, As.
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In the complete seed, instead, the candidate plan for LPG consists of the
plan from PLANGPT without any modifications. This approach enabled LPG
to take advantage of the knowledge of the plan generated after a precondition
violation and, therefore, to provide details on the subsequent phases of the plan.
By correcting the violation of the preconditions, if any, it is possible that the
remaining plan is valid and helps LPG in its search. In Figure 1, for the complete
seed, the candidate plan is Ay, Ag, Az, Ay.

Finally, LPG searches for a solution starting from the input candidate plan
and gives the final plan solution as output. In Figure 1, LPG takes as input
the complete seed and produces the new plan Ay, Ay, As, Ay, Ag substituting
action Az with action A and adding action Ag to obtain a valid solution to the
problem. In our experimental evaluation, we also considered an empty candidate
plan as input to LPG.

5 Experimental Results

Starting from the available trained PLANGPT [20], we extended its generation
process with the integration of a validator and the LPG planner in the eight
benchmark domains used in [20]: BLOCKSWORLD, DEPOTS, DRIVERLOG, FLOOR~
TILE, LOGISTICS, SATELLITE, VISITALL and ZENOTRAVEL.

For each domain, we used more than 6000 testing problems (Tset). The plan-
ning problems in Tset are similar to those used in the International Planning
Competition (IPC) and are created using the available PDDL generators [22].
The choice to use this dataset is to compare a larger number of problems since
the test set of IPC contains only between 30 and 100 problems for each domain.
The PLANGPT models are run on an NVIDIA A100 GPU with 40 GB. Regard-
ing the planners, for each problem, we generate solution plans on an Intel (R)
Xeon (R) Gold 6140M CPU @ 2.30GHz with a standard time limit of 300s.

To evaluate our experiments, we use classical planning metrics such as the
coverage, the plan length and the IPCScore-Quality (IPCQ) and IPCScore-Agile
(IPCA) as defined in the last International Planning Competition (IPC 2023):

— Coverage: the percentage of valid plans over the total number of generated
plans.

— Plan Length: the score of a problem is the number of actions of a solution
plan. The score of a model is the mean of its score for the problems solved
by all the models.

— IPCScore-Quality: The score of a problem is the ratio C*/C where C is
the cost of the plan discovered by the model and C* is the cost of a reference
plan (the cheapest plan obtained by all models for that problem). The score
of an unsolved problem is 0. The score of a model is the sum of its scores for
all problems.

— IPCScore-Agile: The score of a problem on a solved task is 1 if the task
was solved within 1 second and 0 if not solved within the resource limits.
If the problem is solved in T seconds (1 < T < 300) then its score is 1 —
log(T)/log(300). The score of a model is the sum of its scores for all problems.
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In the following, we evaluate PLANGPT and LPG in terms of coverage
and plan length compared on Tset considering different execution time thresh-
olds. Next, we evaluate R-PLANGPT, combining the repair process of LPG
using partial, and complete seed on the invalid plans generated by PLANGPT
in terms of coverage, plan length, and execution time to find the best solution
compared to LPG with an empty seed. Finally, we compare the performances of
R-PLANGPT with LAMA, FD, PLANGPT and LPG in the IPC benchmark
problems for our domains in terms of coverage, IPCQ and IPCA.

5.1 PLANGPT vs LPG

This section compares PLANGPT (using top p sampling) and LPG (initialised
with an empty seed) over the Tset on coverage and plan length, evaluating differ-
ent execution times. PLANGPT generates a single solution, while LPG produces
multiple solutions in an interval of 5 minutes of incremental quality. Considering
that PLANGPT was trained on suboptimal planning instances solved by LPG,
this comparison demonstrates the model’s capabilities relative to its teacher,
highlighting instances where it can surpass the performances of LPG. Table 1
shows the coverage of PLANGPT and LPG considering different execution time
thresholds: 10 seconds, 20 seconds, 1 minute and 5 minutes. Both systems ob-
tain high coverage in under 10 seconds of execution with almost perfect scores
on BLOCKSWORLD, SATELLITE, VISITALL and ZENOTRAVEL. Instead, DEPOTS and
DRIVERLOG obtain lower levels of coverage due to the high number of states to
evaluate in the search, while FLOORTILE’s performances are affected by the nu-
merous dead-ends of the domain. After 20 seconds, we can observe that even
DEPOTS and DRIVERLOG obtain high coverages, while FLOORTILE obtains high
coverages only after 1 minute for both systems. Finally, considering the time
threshold of 5 minutes, LPG obtains higher coverages than PLANGPT having
a difference up to 5% (0% in BLOCKSWORLD, 5% in DEPOTS, 2% in DRIVERLOG
and SATELLITE, and 0.1% in VISITALL and ZENOTRAVEL). We can observe a no-
table difference in the LOGISTICS domain where LPG obtains a higher coverage
than PLANGPT (98% vs 77%). This domain is very complex for PLANGPT
since it belongs to the C3-fragment of the first-order logic. Lastly, we observe
that PLANGPT obtains higher coverage than LPG (99% vs 93%) in FLOORTILE,
because the LPG search is affected by the numerous dead-ends present in this
domain.

Table 2 shows the results of the plan length of PLANGPT and LPG of the
problems solved by both systems considering the time ranges of 10 seconds, 20
seconds, 1 minute and 5 minutes. In general, we observe that, in less than 10
seconds, PLANGPT obtains plans of shorter length; after 1 minute, the two
systems are comparable in different domains. Given more time, LPG obtains a
better quality in all domains, except for FLOORTILE, where PLANGPT obtains
the best plan length. Given that PLANGPT generates a single plan and stops
the generation, we expect that LPG obtains shorter plans in the long run be-
cause it continues to produce solutions of incremental quality. In BLOCKSWORLD
and DEPOTS, within 1 minute, PLANGPT obtains shorter plans of an action.
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< 10s < 20s < 1lm < bm
domain LPG PLaNGPT|LPG PLaNGPT|LPG PLanGPT| LPG PLanGPT
BLOCKSWORLD| 99.3 99.3 99.9 100.0 |100.0 100.0 100.0 100.0
DEPOTS 77.6 76.0 99.4 94.5 99.8 94.8 99.9 94.9
DRIVERLOG 61.1 61.0 98.1 96.3 99.8 97.8 99.9 97.9
FLOORTILE 40.8 41.2 58.0 62.6 93.2 99.3 93.5 99.6
LOGISTICS 98.0 77.2 99.9 77.3 99.9 77.3 99.9 77.3
SATELLITE 100.0 98.1 100.0 98.1 100.0 98.1 100.0 98.1
VISITALL 99.8 99.8 100.0 99.9 100.0 99.9 100.0 99.9
ZENOTRAVEL [100.0 99.9 100.0 99.9 100.0 99.9 100.0 99.9

Table 1. Percentage coverage of PLANGPT and of LPG over Tset. For each time

frame we highlight in bold the best results.

< 10s < 20s < 1lm < 5m
domain LPG PLaNGPT|LPG PLaANGPT|LPG PLaNGPT|LPG PLaANGPT
BLOCKSWORLD| 40.4 38.0 39.4 38.2 38.3 38.2 37.5 38.2
DEPOTS 35.0 33.9 38.8 37.6 37.9 37.7 36.8 37.7
DRIVERLOG 69.5 67.5 85.9 84.7 80.2 85.6 73.4 85.7
FLOORTILE 51.5 43.8 76.5 55.8 70.4 58.8 61.9 59.0
LOGISTICS 19.3 21.7 19.1 21.7 18.8 21.7 18.5 21.7
SATELLITE 29.8 29.9 29.8 29.9 29.7 29.9 29.7 29.9
VISITALL 41.7 44.8 40.9 44.9 39.9 44.9 38.9 44.9
ZENOTRAVEL 41.3 40.3 39.8 40.3 38.3 40.3 36.3 40.3

Table 2. Plan length of PLANGPT and of LPG over Tset for the problem solved by
both systems. For each time frame we highlight in bold the best results.

After 1 minute, LPG produces plans of similar length. In DRIVERLOG, we can
observe that LPG obtains better plans after 1 minute with a more significant
number of actions (5 after 1 minute and 12 after 5 minutes). Overall, in the
domain of LOGISTICS, there is always a difference of 3 actions between the sys-
tems. In VISITALL, this difference is around 3 to 5 actions in favour of LPG.
In ZENOTRAVEL, first PLANGPT has a higher quality, but then LPG obtains
lesser and lesser actions up to a difference of 4 actions. In SATELLITE, the two
systems obtain the same plan length. Finally, we can observe that in FLOORTILE,
PLANGPT generates plans having better quality for each timeframe: a difference
of 8 actions before 10 seconds, 11 before 1 minutes, since PLANGPT has already
generated all the plans, and 3 after 2 minutes when LPG completes its search.
This surprising result in the FLOORTILE domain implies that learning a policy
from valid plans can be helpful when the search uses a negative-effect relaxation
in the heuristics leading to explore numerous undetected dead-ends.

5.2 PLANGPT as initial seed of LPG

In Table 3, we show the integration of PLANGPT and LPG, R-PLANGPT,
using different initialisation strategies (partial and complete plan seed) given to
the planner LPG to solve the unsolved problem of PLANGPT and comparing
against LPG with an empty seed. We show the coverage, plan length, and the
average execution time used by LPG to obtain the best solution for each seed. We
analyse DEPOTS (356), DRIVERLOG (158), LOGISTICS (1504) and SATELLITE (123)
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LPG R-PLANGPT

Empty Partial Complete
domain cov length time| cov length time | cov length time
DEPOTS [100.0 55.2 128.9/100.0 56.4 84.9| 97.8 54.8 105.9

DRIVERLOG| 99.9 127.6 169.6/100.0 128.8 101.1| 87.4 128.2 126.6
LOGISTICS | 99.5 52.6 104.5|/99.8 51.8 86.9| 97.3 51.9 89.9
SATELLITE {100.0 40.5 14.8|100.0 40.6 18.7 {100.0 40.8 18.2

Table 3. Percentage coverage (cov), plan length (length), CPU time of problem un-
solved by PLANGPT and corrected by the complete system R-PLANGPT, using the
partial and complete seed strategies. In the first columns we show also the results ob-
tained by LPG without seed on the same set of problems.

since these domains have at least 100 invalid plans generated by PLANGPT.
The execution time of the generation of PLANGPT and the validation (in the
partial and complete seed) is added to the LPG computation time to show a
fair comparison to the empty seed, which does not require PLANGPT. On the
other side, the LPG search time limit is 5 minutes.

From Table 3, concerning coverage, the quality of the empty and partial seeds
is comparable, solving most of the problems unsolved by PLANGPT. However,
we have a drop in performances with the complete seed. More specifically, we
observe that using the partial seed in DRIVERLOG and LOGISTICS slightly en-
hances the coverage of LPG. On the contrary, in SATELLITE, using a seed is not
helpful to LPG. However, using the complete seed, we observe a drop of the cov-
erage in SATELLITE (—2.2%), DEPOTS (—12.5%) and LoGIsTICS (—2.2%). LPG
struggles to correct very long plans (also with cycles) or plans with multiple
violations and, therefore, the useful actions that can be extracted from the plan
are insufficient to compensate for this problems. Although individually LPG and
PLANGPT cannot compute a valid solution for 20 problems in FLOORTILE, when
combined using the partial seed, R-PLANGPT solves these problems, obtaining
valid plans exploiting the knowledge of PLANGPT and refining the plan with
the LPG search.

Concerning the plan length, the quality of the plans for the 3 seeds is compa-
rable overall, with a mean difference of a single action. For DEPOTS and SATEL-
LITE, the best seed is the complete seed. In the case of DRIVERLOG, LPG without
PLANGPT obtains the best length. While for LOGISTICS, the best seed is the
partial seed.

Regarding the time to generate a solution, using the partial or complete seeds
allows a notable reduction in the heuristic search of LPG to obtain the best
solution. We observe that the time between the plan generated by LPG from
scratch compared to the candidate plans of partial seed decreases with a delta
from 44s in DEPOTS, 68s in DRIVERLOG, 18s in LOGISTICS. Also in the complete
seed, we note a decrease in the execution time, but it is less remarkable than the
partial seed, because LPG must correct and remove loops in the candidate plan:
23s in DEPOTS, 43s in DRIVERLOG and 15s in LOGISTICS. The only exception
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is in SATELLITE, where having a seed for LPG does not lower the time for the
heuristic search, but neither increases it. This result shows how introducing a
plan seed (which contains helpful information on the plan) helps the planner to
carry out a more targeted heuristic search, reducing its execution time.

Therefore, from our results, the partial seed is a better strategy for the com-
bined system R-PLANGPT because the cutting strategy can obtain a help-
ful prefix seed, which the planner can use to start from. The integration of
PLANGPT and LPG produces plans of comparable plan length with a signifi-
cant decrease in the generation of the solution.

5.3 Comparison with SoTA Planners on IPC

In Table 4, we compare the different state-of-the-art classical planners with LP G,
PLANGPT, and the combined system R-PLANGPT with the partial seed strat-
egy using a time limit of 5 minutes. It is important to note that the system
R-PLANGPT uses different configurations for each domain, so it is a domain
dependent approach, and the classical planners considered are domain indepen-
dent. We used the IPCQuality and IPCAgile metrics. We evaluated the system
using the TPC competition problems. Each domain contains 20 planning in-
stances except for BLOCKSWORLD with 35 instances, DEPOTS, 22 and LOGISTICS,
30.

Regarding coverage, FD and LAMA solve all the problems except for DE-
POTS (77% and 95%) and FLOORTILE (10%). The last instances of DEPOTS are
complex because they have many objects. Although FLOORTILE is complex be-
cause it contains multiple dead-ends that are not detected by delete-relaxation
heuristics. PLANGPT managed to solve with high coverage in almost all the
domains (90% in DEPOTS and 95% in DRIVERLOG and VISITALL) with the ex-
ceptions of LoGISTICS (53%) and SATELLITE (70%), providing various invalid
plans. In SATELLITE, PLANGPT struggles when a precondition is bound to an
object selected by a previous action which is far away from the current one.
For instance, in LOGISTICS, PLANGPT struggles to correlate the positions of
the truck and the object simultaneously. In contrast, in SATELLITE, PLANGPT
struggles to select an instrument with the correct mode to take an image. The
best-performing systems proved to be LPG and R-PLANGPT, which solved all
the provided planning problems.

Regarding the IPCQ metric, we observe that R-PLANGP'T reaches the high-
est score in DEPOTS (21.40), FLOORTILE (19.64), and LOGISTICS (27.12). In the
case of FLOORTILE, the results are provided by the solution plans generated
by PLANGPT. In the case of DEPOTS and LOGISTICS, instead, the integration
with the plan-repair procedure of LPG produces the shortest plans. LAMA
reaches the best quality in DRIVERLOG (19.73), VISITALL (19.60), and ZENO-
TRAVEL (19.82), while LPG obtains the shortest plan in BLOCKSWORLD (35.00)
and SATELLITE (19.74). Finally, PLANGPT obtains the best quality in FLOOR-
TILE and comparable performances in the other domains.

Regarding the IPCA metric, we observe that all the planners are faster than
PLANGPT and, therefore, than R-PLANGPT. PLANGPT is generally slower
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domain FD LAMA LPG PLANGPT |R-PLANGPT

IPCQ IPCA |IPCQ IPCA|IPCQ IPCA |IPCQ IPCA|IPCQ IPCA
BLOCKSWORLD| 27.61 35.00| 33.93 34.88 {35.00 35.00 | 34.73 34.20 | 34.73 34.20
DEPOTS 15.15 14.65 | 19.45 20.22 | 18.59 21.85 |17.42 14.27 | 21.40 17.17
DRIVERLOG 18.79 19.06|19.73 18.96 | 18.59 18.79 | 17.08 15.95| 17.46 16.32
FLOORTILE 2.00 1.46 | 2.00 1.44 [17.36 15.99 |19.64 10.39 | 19.64 10.39
LOGISTICS 26.41 30.00|26.55 30.00|24.99 29.90 | 14.02 13.05 | 27.12 22.53
SATELLITE 18.51 20.00| 18.64 20.00|19.74 20.00 | 11.94 11.61 | 19.68 17.12
VISITALL 19.07 15.46 |19.60 12.38 | 19.46 19.86 | 16.53 16.41 | 17.46 16.48
ZENOTRAVEL | 18.85 20.00(19.82 20.00| 19.22 19.38 | 15.71 16.01 | 17.51 17.50
TOTAL 146.39 155.63|159.72 157.88(172.95 180.77|147.07 131.89|175.00 151.62

Table 4. Comparison of IPCQ and IPCA metrics between classical planners (FD,
LAMA and LPG), PLANGPT and R-PLANGPT with the partial seed using the IPC
test set.

to compute a solution because it generates only a single solution with higher
quality. In SATELLITE, all the planners compute the plans in less than 1 second. In
BLOCKSWORLD FD and LPG take less time to compute one solution compared to
the other systems. The same behaviour happens in LOGISTICS and ZENOTRAVEL
with FD and LAMA. FD is the faster planner in DRIVERLOG (19.06), while LPG
obtains the best results in DEPOTS (21.85), FLOORTILE (15.99) and VISITALL
(19.86).

In conclusion, considering the IPC test set, we evaluated the ability of learned
general policies derived from LLM, combined with a plan-repair planner, to pro-
vide enhanced results in various domains and show comparable performances
with SoTA planners. More in-depth, the FLOORTILE domain is particularly ap-
pealing because planners based on delete-relaxation heuristics struggle to acquire
a solution, while R-PLANGPT obtains perfect coverage.

6 Conclusions

In this work, we investigated the possibility of integrating a neural solution
based on the GPT architecture, PLANGPT, with a symbolic one, LPG. Firstly,
we analysed the comparison between LPG and PLANGPT, where PLANGPT
showed comparable performance to LPG in some domains in a limited time
window and better coverage and quality in the case of FLOORTILE. Then, we
proposed our combined system, R-PLANGPT. We showed that PLANGPT can
give information, as a seed, for LPG and guide the heuristic search to a solution
in less time than LPG alone. In fact, R-PLANGPT corrects the majority of
the test problems using the partial or complete seed obtained from the invalid
plans generated from PLANGPT. Finally, we evaluated R-PLANGPT in the
context of the IPC competition against state-of-the-art classical planners with
comparable performances. Current and future work includes training PLANGPT
on other challenging domains for planners, integrating the domain knowledge
in the training phase, and overcoming the current limits due to the maximum
number of objects in the vocabulary and the length of the context window.
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