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Abstract. Physical rehabilitation is essential for restoring functionality
and improving the quality of life for individuals affected by neurologi-
cal or musculoskeletal conditions. Rehabilitation robots emerged as key-
enabling technology to deliver intensive treatments and objectively quan-
tify patients’ motor performance. In the context of Healthcare 5.0, per-
sonalization of the treatment is paramount to improve the effectiveness of
the interventions. Personalization can be implemented reactively, by pro-
viding real-time physical assistance and feedback, and deliberatively, by
planning sessions based on therapeutic goals. Inspired by Kahneman’s
dual-system theory, this paper proposes a cognitive architecture for a
robot-aided rehabilitation platform capable of delivering personalized
treatment through deliberative and reactive techniques. The proposed
cognitive architecture is described and validated through experimental
sessions. Six healthy participants were enrolled in the experiments, sim-
ulating a robot-aided rehabilitation session with a TIAGo service robot
serving as the physical interface to deliver the planned session. The re-
sults highlight that the plans generated according to different clinical
objectives elicited distinct physiological responses from the participants,
demonstrating the effectiveness of the personalized approach.

Keywords: Robot-aided rehabilitation · Physical rehabilitation · Auto-
mated Planning · Task Planning.

1 Introduction

Physical rehabilitation is a crucial component in the recovery process for in-
dividuals affected by different disabilities, ranging from neurological conditions
to musculoskeletal injuries, aiming to restore lost functionality and improve the
quality of life and independence. In 2019, over 2.4 billion people worldwide were
living with health conditions that could benefit from rehabilitation, highlighting
the immense need for physical treatments [1]. Conventional physical therapy in-
volves a complex interaction between a physiotherapist and the patient, including
physically manipulating the patient’s body and developing an empathetic rela-
tionship [2]. Physiotherapists assess the patient’s condition and create tailored
rehabilitation exercise plans to push forward motor recovery and promote active
participation [3].
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In this scenario, rehabilitation robots have started to play an increasingly
important role thanks to their capabilities to i) deliver highly intensive and
repetitive treatments, ii) implement different care paradigms, iii) integrate feed-
back systems to gamify exercise and iv) objectively quantify patients’ motor
performance [4]. Among the opportunities that robotics provides in physical re-
habilitation, personalization is one of the features that stands out the most as
it enables the delivery of engaging treatments that promote active participation
and improve motor recovery [5]. Personalization of robot-aided rehabilitation
could be implemented at multiple levels: reactive and deliberative ones. The for-
mer generates reactive actions to support the execution of the individual task
in real-time according to the patient’s needs and state by providing tunable
physical assistance or contextualized feedback [6]. The other acts at a higher
level to recommend rehabilitation plans consistent with the motor recovery of
the individual user [7]. In other words, robot-aided rehabilitation systems can
be designed drawing inspiration from Kahneman’s dual-system theory [8]. This
allows for slow, deliberate planning of each rehabilitation session based on ther-
apeutic goals and fast, real-time feedback and corrections during the execution
of individual exercises. This dual approach ensures that each session is optimally
tailored to the patient’s progress and needs, enhancing the overall effectiveness
of the rehabilitation program.

In this context, we propose a cognitive architecture for a robot-aided re-
habilitation platform designed to personalize treatment by combining the two
reasoning perspectives: deliberately, by generating a physiotherapy exercise plan
suitable for the clinical goals of each session, by monitoring task execution and
providing contextual feedback in real-time. This work introduces the main func-
tional components of the architecture. A preliminary validation involving six
healthy participants in a simulated robot-aided rehabilitation session with the
TIAGo robot, demonstrating the feasibility of the approach.

The rest of the paper is structured as follows. Section 2 presents the scientific
literature investigating the development of cognitive architectures to provide
physical therapy. Section 3 introduces the proposed approach to personalize the
rehabilitation treatment, its experimental implementation, and validation with
healthy participants. Section 4 shows and discusses the results obtained in the
experimental validation. Lastly, Section 5 summarises the main contributions
and results and outlines future developments.

2 Related Works

Cognitively sophisticated architectures have been proposed in the literature
in the healthcare context to provide robotic systems for rehabilitation with
more complex comprehension and adaptation capabilities than traditional robot-
mediated rehabilitation systems.

In [9,10], a control architecture for a social robot in rehabilitation is proposed,
which handles both physical and cognitive interactions. Monitoring systems ana-
lyze users’ movements, facial expressions, and spoken sentences to manage differ-
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ent behaviors following the “Stimulus-Response” approach [11]. The robot shifts
roles from Demonstrator, the robot explains the motor task, to Observer, it
monitors the patient’s movements, and to Helper, it physically assists in task
execution. This responsive platform effectively engages participants by integrat-
ing multimodal monitoring and natural language communication skills. However,
it does not customize the treatment plan based on the patient’s condition.

Automatic planning techniques have recently begun to contaminate robotic
rehabilitation systems as they allow the generation of plans that consider the pa-
tient’s condition at admission and generate an appropriate schedule of exercises
to achieve certain goals within a session [12]. In particular, automatic planning
methodologies were used to administer clinical scales, such as the Comprehen-
sive Geriatric Assessment and the Quality of Upper Extremity Skills Test [13].
Both clinical scales require the patient to replicate a series of poses. Once the
patient reaches the required pose, the robotic system, which includes the NAO
robot and a Kinect camera for upper limb kinematics monitoring, calculates the
deviation of the achieved pose from the desired one and automatically compiles
the assessment sheet. A similar architecture has been applied to provide physical
training to children with neurological disorders such as Cerebral Palsy or Obstet-
ric brachial plexus palsy [14, 15]. This autonomous system plans rehabilitation
sessions for children by offering two games: Mirror and Simon [16]. In these
games, children mimic upper limb poses demonstrated by the robot. The sys-
tem employs an automated planning process to generate pose sequences, thereby
ensuring the inclusion of various poses within each session, and dynamically ad-
justing error thresholds for personalized treatment. The poorer the performance,
the higher the tolerance. Although this architecture demonstrates its capabilities
in generating more engaging and tailored sessions and leading to a notable motor
recovery, this planning system has the only objective of planning a session of a
certain duration structured as a sequence of warm-up, training, and cool-down
phases. Recent research has concentrated on automated planning methodologies
for rehabilitation sessions. These methodologies involve the design of choreogra-
phies to challenge participants in specific aspects, such as energy expenditure
or balance [17]. This system uses the patient’s motor condition to generate step
sequences targeting the specific clinical objectives. However, this platform lacks
a monitoring system to assess the impact of the generated plans on users.

Despite the development of sophisticated robotic rehabilitation systems, ex-
isting methodologies frequently fail to i) personalize treatment plans according
to the specific circumstances of individual patients; ii) adapt exercise sequences
in real-time, and; iii) comprehensively monitor and evaluate the impact of re-
habilitation plans on users’ progress. Therefore, there is a critical need for a
control architecture in robotic rehabilitation that personalizes treatment based
on patient-specific conditions and therapist-set clinical objectives. This system
should integrate real-time monitoring and feedback to adapt the treatment plan,
enhancing the effectiveness of interventions through tailored and responsive care.
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3 Materials and Methods

3.1 Proposed Approach

We introduce the REPAIR platform capable of integrating deliberative planning
and fast motion classification to support personalized assistance in physical re-
habilitation. The architecture is organized according to the Dual Process theory
and combines (slow) deliberative and (fast) reactive reasoning capabilities [7,18].
The deliberative layer is in charge of deciding the proper exercise set to admin-
ister to the patient and adapting planned and interacting behaviors according
to clinicians’ feedback and observed state and performance. The reactive layer
is in charge of controlling robot actions as well as evaluating the execution of
planned activities through the monitoring of patient’s movements and physio-
logical state. Figure 1 shows the organization of the functional components and
the resulting control flow. It is worth noticing that REPAIR pursues a human-
in-the-loop methodology [19] where feedback from clinicians is crucial to tailor
reasoning and acting capabilities to specific clinical needs and objectives.

Fig. 1. Architecture of the proposed robot-aided rehabilitation platform.

The overall process begins with the clinician administering a set of clinical
scales providing a clear overview of the patient’s condition. In this regard, the
clinician has the crucial role of endowing the system with the health-related
knowledge necessary to make decisions that comply with the clinical practice.
Namely, the clinician initializes a Knowledge Base encapsulated in the Knowl-
edge Manager by providing domain-specific knowledge suitable to contextualize
planning decisions according to different clinical objectives. For example, the
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clinician’s input is crucial to model and characterize the effects of physical ex-
ercises on health-related conditions/features of patients [17].

Given the specific pathological condition and the patient’s level of disability,
the clinician specifies a clinical goal to reach in the current session and possibly
additional constraints or preferences, e.g. the maximum session duration. Such
a goal is fed into the automated planning module, also named Session Planner,
that leverages the information stored in the Knowledge Manager, i.e. the list of
exercises that can be used to generate the session along with their characteristics,
to compute a proper Plan. Automated planning methodologies can be exploited
inside the Session Planner to solve the planning problem of finding a personalized
Plan for the patient under examination. In this context, a Plan is represented by
a list of physical exercises (stimuli) that ensures the achievement of the specific
clinical goal set by the clinician. Furthermore, the clinician can access the plan
generated by the autonomous rehabilitation agent and modify it as appropriate,
including the addition, removal, or modification of exercises, to ensure accurate
supervision of the session (see dashed line in Fig. 1).

The execution of the rehabilitation session is managed at a low level by
the reactive layer. It includes a module for user Multimodal Monitoring that
collects raw information from several perspectives, ranging from kinematics to
physiological measurements, useful to estimate user state. Indeed, the User State
Estimation module takes as input the data collected from a set of sensors and
estimates the complex state of the patient [20]. The user state represents, in an
abstract symbolic manner, the quality of the movement performed by the user
as well as information regarding the physical or cognitive spheres during the
execution of a task. Such an estimation has a twofold effect: it triggers the Robot
Action Execution in the reactive layer, such as the returning of verbal feedback
or providing physical assistance, and it returns the information to the Session
Planner to check whether re-planning is needed.

Lastly, it is worth noting that the Knowledge Manager is interconnected with
both the estimation and action modules. This allows it to adapt the reactive
modules according to its internal knowledge. The focus of the estimation process
may change depending on the context, as well as the action module can generate
different behaviors based on the robot’s capabilities. For instance, a humanoid
robot can physically mirror the tasks, a robot with an anthropomorphic arm
can physically support task execution, and a digital system can provide vocal
feedback.

3.2 Experimental Evaluation

To validate the proposed methodology, we implemented the approach described
in Section 3.1 on a robotic platform to conduct robot-aided rehabilitation ses-
sions. Moreover, a monitoring system was employed to track the user’s state
throughout the sessions. The following sections provide a detailed account of the
materials used in the experimental setup and explain the implementation of each
functional block of the architecture to achieve the desired behaviors.
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Experimental Setup The service robot TIAGo (PAL Robotics S.L., Spain)
was used as the physical robotic system. TIAGo features an anthropomorphic
arm with 7 degrees of freedom (DoFs), a liftable torso, and a mobile base on
wheels. Additionally, the robot is equipped with a microphone and speakers to
manage audio input and output. Its head, which also has pan and tilt degrees of
freedom, mounts an Asus Xtion RGB-D camera capable of providing RGB and
depth images with a resolution of 640×480 at a frame rate of 30 Hz. Moreover, the
participants were asked to wear a GARMIN Vivosmart 4 wristband to collect
their Heart Rate (HR) [21]. Figure 2 shows the experimental setup used to
evaluate the proposed methodology. All the software components run under the
robot operating system (ROS Melodic).

Fig. 2. Experimental setup used to evaluate the proposed methodology.

Knowledge Manager. The Knowledge Manager is the central data repository
for patient profiles and exercise information. It maintains comprehensive profiles
for each patient, including their clinical history, current condition, and progress.
Additionally, it houses a detailed list of potential rehabilitation exercises, each
described in terms of intensity levels. In the system tested in this paper, 23
exercises were extracted from the "PhysioTherapy eXercises" database [22], see
Table 3.2. The selection of these exercises was based on their capacity to elicit a
range of intensities, thereby engaging all major muscle groups. This repository
is of critical importance for the Session Planner module, which accesses the
Knowledge Manager to generate personalized and effective session plans.

Session Planner. The Session Planner is the high-level reasoning component
that decides the sequence of physical stimuli suited for a rehabilitation session.
The component relies on timeline-based planning [23, 24] and integrates search
strategies capable of reasoning on the numeric effects of physical stimuli [17].
Specifically, we have extended the open-source planning framework PLATINUm1

[25] with a heuristic search suitable to evaluate the clinical qualities of partial
plans. Algorithm 1 briefly describes the structure of the search procedure. The
1 https://github.com/pstlab/PLATINUm.git

https://github.com/pstlab/PLATINUm.git
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Table 1. List of the exercises implemented in the Knowledge Base

ID Exercise Intensity ID Exercise Intensity

A1 Arm circles 1 A13 Frontal lunges 3
A2 Side stretches 1 A14 Squat 3
A3 Side leg raises 1 A15 Military press 3
A4 Scarecrow arms rotation 1 A16 Side lunges 3
A5 Forward bend stretch 1 A17 Butt kicks 3
A6 Cross-body arm stretch 1 A18 Boxing 4
A7 Standing quad stretch 1 A19 High knees 4
A8 Bicep curl 1 A20 Jumping jacks 4
A9 Arm lateral raise 2 A21 High kick 4
A10 Arm front raise 2 A22 Jump squats 5
A11 Cross-body toe touches 3 A23 Running in place 5
A12 Body crunches 3

planner receives as input the clinical objective encapsulated into a heuristic
function Hπ and the number of exercises to be administrated N .

Algorithm 1 Heuristic search procedure of the Session Planner.
Input: Hπ,N
Output: π = (FTL,R)
1: Π ′ ← ∅
2: π ← initialize (SV,S)
3: while ¬meetsRequirements (π,N ) do
4: Π ′ = {π′

1, π
′
2, ..., π

′
m} ← refine (π)

5: π ← select (Π ′,Hπ)
6: end while
7: return π

The termination condition represents a novel aspect of the implemented
search procedure. Unlike “classical” planning problems requiring to achieve a
certain state or decompose a certain task, the objective here is to synthesize
a plan π which considers a sufficient number of stimuli. Plan refinement thus
should always consider the possibility of recursively making additional planning
decisions (i.e., subgoals) until plan requirements are met (rows 3-5). In the con-
sidered problem, the requirement conditions concern the number of stimuli N
specified by the clinician. Alternatively, the clinician can specify the minimum
duration of the session instead of the minimum number of exercises.

The planner should search for plans π that achieve a certain (clinical) objec-
tive within the specified requirements. In the current work, we consider two ex-
tremal clinical objectives: (i) LOW intensity HLOW

π ; (ii) HIGH intensity HHIGH
π .

Equation 1 intuitively describes the objective function fi (Π) of the planning
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problem. It leverages data about exercise intensity in Table 3.2 to evaluate the
cumulative intensity of the subset of selected exercises in a given plan π.

fi (π) =
∑
ai∈π

intensity (ai) (1)

Two search strategies HLOW
π , HHIGH

π have been developed to evaluate se-
quences of physical exercises ai ∈ π of a plan π that respectively minimize and
maximize the cumulative intensity fi (π). Although we have considered the two
simple objective functions mentioned above, the developed approach can support
a wider set of more detailed/complex objectives provided by a therapist [17]. It
is then worth underlining that our system can be extended to support many
different clinical requirements and applications. It is worth noticing that the
system has been designed with the explicit intention of assisting healthcare pro-
fessionals, and not to supplant their role. This ensures that the expertise and
judgment of therapists remain at the core of patient care.

Multimodal Monitoring. In this experiment, the multimodal monitoring system
collects data related to two dimensions: movement and cardiac activity. The
TIAGo robot’s built-in camera tracks the user’s kinematics during the task exe-
cution. Specifically, once a frame is captured by the RGB camera, the Mediapipe
pose algorithm is employed to retrieve the user’s anatomical landmarks [26]. The
three-dimensional joint coordinates in the real world, expressed in the user’s ori-
gin frame, which is situated between the hips, are collected at a frequency of 30
Hz. In particular, the coordinates of the shoulders, elbows, wrists, hips, knees,
and ankles were considered, as the objective was to monitor total body motions.
Furthermore, the user’s heart rate is collected throughout the session from the
wrist-worn device at a frequency of 1 Hz.

User State Estimation. The user state estimation module is responsible for recog-
nising, classifying and counting the user’s movements. This software module
identifies which of the known activities the user is performing and tracks the
duration of each action.

To train the action classification algorithm, data were collected from four
healthy participants (26.2±4.1 mean age, 4 males). For each of the 23 exercises,
data were gathered over 20 seconds at a sampling rate of 30 Hz, resulting in 600
observation per exercise. Additionally, a further class was included (A0), repre-
senting the resting condition, with data collected under identical conditions.
Each observation comprised the three-dimensional coordinates of anatomical
landmarks of the upper and lower limbs, monitored over 30 frames (equiva-
lent to one second). The supervised model employed in this study to perform
action recognition was a Support Vector Machine (SVM) with a radial basis
function kernel. The choice of the SVM classifier was driven by its effectiveness
in handling high-dimensional data, robustness to overfitting, and its suitability
to perform real-time inferences during robot-aided rehabilitation sessions [27].
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Robot Action Execution. The robotic tasks considered in this scenario are: i)
displaying the currently administrated exercise, and; ii) providing visual and vo-
cal feedback on the task execution. The monitor of the robotic system provides
visual feedback, displaying the physical motion to be performed. Additionally,
the robot may deliver verbal feedback to guide the user through the exercises.
This dual feedback mechanism ensures clear communication and helps maintain
user engagement and correct execution of the rehabilitation tasks. The feedback
phase allows for the real-time correction and reinforcement of the user’s move-
ments. The administration of visual and verbal feedback facilitates the user’s
comprehension of and ability to modify their task execution, thereby ensuring
continuous engagement and immediate guidance [10].

Experimental Protocol In this experiment, 6 healthy right-handed partici-
pants (30.8± 5.3 mean age, 5 males and 1 female) were enrolled. They provided
written consent to participate in the study. To test the capability of the system
to deliver different rehabilitation sessions, each participant was asked to perform
two sessions, specifically planned with the objectives of LOW and HIGH inten-
sities and the same requirement in terms of duration, i.e. the session is required
to be composed of 10 exercises.

Performance Indicators The offline performance of the implemented action
classification model was initially evaluated. Since data from four participants
were recorded, a leave-one-subject-out (LOSO) cross-validation approach was
employed. This method entails training the model on data from three partici-
pants and testing it on the data from the remaining one. This process is repeated
for each enrolled participant, thereby ensuring a robust evaluation of the model’s
performance. Given that the dataset was balanced, accuracy was selected as the
metric to assess the classification performance. Moreover, the time needed to
train (TSVM

train ) the model as well as the time to perform inference (TSVM
predict) were

computed.
To quantify the efficacy of the Session Planner in generating tailored plans

and the impact of the session on the enrolled subjects, the following performance
indicators were computed:

– Cumulative Plan Intensity (ΣPI): This indicator quantifies the overall inten-
sity of all exercises incorporated into a rehabilitation session. The indicator is
calculated by summing the individual intensities of each exercise and reflects
the planner’s ability to generate plans with different intensities according to
specific input intensity requirements.

– Session Duration (Ttot): total time taken to complete a rehabilitation session
is defined as the entire period from the beginning to the end of the session,
including any intervals or breaks, and is expressed in minutes. The moni-
toring of Ttot enables the assessment of whether plans generated at different
intensity levels require different amounts of time.
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– Normalized Hear Rate (HRn): the user’s HR mean response, calculated as

HRn = mean

(
HR−HRbase

HRbase

)
(2)

where HR is the actual heart rate during the session and HRbase is the
baseline heart rate at the beginning of the session. The value of HRn provides
information on the physiological impact of the planned session on the user.

The Mann-Whitney test was employed to ascertain whether there were any
statistically significant differences between the computed metrics when LOW
and HIGH intensity plans were administered to the participants. Furthermore,
Pearson’s linear correlation test was used to compute the relationship between
the ΣPI and HRn. The significance level was set for both statistical tests at a
p-value of 0.05.

4 Results and Discussion

Fig. 3A reports the normalized confusion matrix obtained by appending all
the predictions inferred on the testing subjects during the LOSO validation.
The mean accuracy was found to be 81.80 ± 4.11%. These results demonstrate
the model’s capacity to maintain accuracy across diverse individuals, which is
a crucial attribute for models that handle user characteristic variability while
ensuring consistent performance levels. The training time for the SVM model
was TSVM

train = 597.25 ± 50.16 s, and the inference time per observation was
TSVM
predict = 0.07 ± 0.03 s. These results suggest that while the SVM model re-

quires a reasonable training period, its quick inference time per observation
makes it suitable for applications requiring rapid decision-making and real-time
processing of data.

Fig. 3B illustrates the frequency of occurrence of the various exercises in the
planes generated at LOW and HIGH intensities. The two conditions are rep-
resented by different colours: green and red for LOW and HIGH, respectively.
The graph illustrates how the rehabilitation plans are adapted according to the
required intensity level, employing a combination of exercises to optimize the
effectiveness of the session. The LOW-intensity plans comprise a more diverse
range of exercises, distributed throughout the session in a more balanced man-
ner. In contrast, the HIGH-intensity plans focus on a smaller set of exercises,
including squats, frontal lunges, and high knees, which are selected by the plan-
ner with greater frequency. This distinction reflects the adaptation of the plans
to enhance the efficacy of the workout, with a greater emphasis on variety and
balance in the low-intensity plans and a more concentrated approach to high-
impact exercises in the high-intensity plans.

Fig. 4 shows the performance indicators computed during the experiments
carried out in the validation of the proposed planning system. As expected, ΣPI
values reflect the clear statistically significant difference between the LOW and
HIGH conditions (p-value< 1 · 10−2). The HIGH condition requires a greater
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Fig. 3. A. Normalized confusion matrix of the trained SVM model for action classifi-
cation. B. Occurrences of the exercises in the plans for LOW and HIGH intensity.

ΣPI, consistent with generating more intense sessions and therefore tailoring
the session according to the specific clinical goal.

Although the average session duration is slightly longer in the HIGH condi-
tion, there is some overlap between the two groups and the distributions are not
statistically different (p-value= 0.7). This suggests that HIGH sessions, while
more intense, do not always take significantly longer than LOW sessions. Varia-
tions in sessions duration may be influenced by several factors, such as individual
responses to tasks and variability in exercise performance.

The HRn metric demonstrates a statistically significant difference between
the LOW and HIGH conditions (p-value< 1 · 10−2). The mean HRn values in
the HIGH condition are significantly higher, suggesting that the more intense
the plan is, the higher the physiological response. This aligns with the expecta-
tion that more intensive sessions (HIGH) cause a greater increase in heart rate
compared to less intensive sessions (LOW). Negative HRn values in some LOW
sessions indicate minimal or negative physiological response, i.e. a lower HR
with respect to the baseline condition, likely due to the relatively low intensity
of the exercises. Such a result is also stressed by Pearson’s linear correlation
between ΣPI and HRn demonstrating a statistically significant strong linear
relationship ρ = 0.68 (p-value= 0.01).

5 Conclusions

This work presents a cognitive architecture for a robot-aided rehabilitation plat-
form designed to provide personalized treatment by integrating deliberate exer-
cise planning and real-time reactive feedback. The proposed system was validated
with six healthy participants using the TIAGo robot to simulate rehabilitation
sessions. Despite the relatively modest cohort size of enrolled subjects, the find-
ings indicate that the planner can effectively produce different sessions according
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Fig. 4. Performance indicators computed during the experimental validation, catego-
rized by the LOW and HIGH experimental conditions. ns indicates no statistically
significant difference, and ∗∗ denotes a significant difference (p-value < 0.01).

to the input intensity level. Different exercises were selected and the ΣPI re-
flects the intensity. Moreover, the multimodal monitoring system revealed that
HIGH intensity sessions significantly impacted the participants’ HR, reflecting
a greater physiological response. Indeed, a statistically significant strong linear
correlation was found between the HRn and ΣPI. The results demonstrate that
the planned sessions elicited disparate effects on the body’s response.

The preliminary findings demonstrate the platform’s capacity to adapt ex-
ercise intensity and impact patient response, thereby generating personalized
rehabilitation sessions. The long-term objective is to circumvent repetitive ex-
ercises and target specific body areas for varied and efficacious rehabilitation.
The system can be expanded to support a greater number of therapeutic pro-
grams and integrate additional sensors to endow the REPAIR platform with the
capability to estimate psychophysiological processes and enhance the Session
Planner with comprehensive user state estimates for more sophisticated rehabil-
itation plans. Moreover, from a clinical point of view, extensive experiments will
be carried out enrolling the pathological population to assess the applicability
of such a system in real clinical practice.
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