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Abstract. This paper illustrates the development of Minerva Diagnos-
tic Retriever (DR-Minerva), a Visual Language Model specialized in the
medical domain. Prompted using a textual input with the patient’s in-
formation along with a CT or MR scan, the model provides information
about the body part and the scanning modality of the given image. The
model relies on the Flamingo architecture, which is well known for its
good in-context and few-shot learning capabilities, and it encodes textual
data using Minerva, a novel Large Language Model trained on English
and Italian data. Model performances are improved via fine-tuning the
aforementioned model, and using external knowledge by means of a Re-
trieval Augmented Generation approach. At inference time, the model is
injected with the retrieved examples in form of in-context learning. The
authors developed a rearranged version of the MedPix® multi-modal
medical dataset, that was used for both the development and the test
of the model as long as for retrieval. A detailed description of the sys-
tem is reported along with the experimental results that are discussed
in thoroughly. Dataset and models used are available on GitHub3.

Keywords: Multimodal Language Model · Retrieval Augmented Gen-
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1 Introduction

The spread of Artificial Intelligence (AI) in the medical domain has been rev-
olutionary, beginning to transform the way in which diagnosis, treatment, and
monitoring of patients are carried out. In particular, in recent years, the develop-
ment of AI-based technologies for decision making support for physicians, gained
a relevant interest in the scientific community, through the use of increasingly
complex and precise Deep Neural Networks (DNNs) capable of analysing the
whole variety of data available from clinical departments [5]. Today, the devel-
opment of increasingly precise support systems is the natural development for
3 https://github.com/CHILab1/MedPix-2.0
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computer applications within this domain, which must, however, not only de-
velop predictive capabilities, but also an ever-increasing level of trustworthiness
for physician and patient safety. To achieve these goals, DNNs need to be trained
on an ever-increasing amount of data to improve their generalization capability.
Unfortunately, the shortage of data is the biggest obstacle that does not allow
rapid progress towards this goal to date. Currently, the models developed by
the scientific community are based on public domain datasets, which are of poor
quality because they are collected episodically without an established protocol
for adding new data to the set. Often, such datasets are assembled for a scientific
challenge, and their metadata only reflect the purpose of the scientific question
behind the competition. The data needed to build reliable AI-enabled Medi-
cal Decision Support Systems (MDSS) must be collected directly from clinical
sources, and their metadata must be standardized, especially for Vision Lan-
guage Models (VLM) or on a Multimodal architecture of various kinds (Large
Multimodal Model, LMM). It is precisely these models that are perfectly suited
to the role required for physician support, thanks to their ability to integrate and
process textual and visual information, providing rapid and objective support
by analysing the features extracted from the data provided.

We present a new implementation of a VLM, based on Flamingo[2] and Min-
erva LLM, called Minerva Diagnostic Retriever (DR-Minerva), which have been
trained through fine-tuning for the classification and prediction of two main fea-
tures of biomedical data, i.e. the modality that contains the information inherent
to the type of source of the biomedical image (e.g. CT, MRI) and the location
that instead refers to the anatomical region that has been examined. The pro-
posed neural architecture aims to perform few-shot predictions by identifying
both modality and location, and if required returns the join of both predictions
given a medical image and a short text with the information of the patient.
Few-shot prediction is done via a Retrieval Augmented Generation (RAG) ap-
proach [15], leveraging on the peculiar textual information provided and the
re-arranged version of the MedPix® [1] was used.

The paper is arranged as follows: Section 2 illustrates the relevant contri-
butions within LMM in the medical domain. The architecture of the developed
systems is reported in Section 3 along with the dataset used, while the experi-
mental setups and results are reported and discussed in Section 4. Future works
and concluding remarks are drawn in Section 5 and 6 respectively.

2 Related works

Since development of transformed-based Language Models (LM) [28] like BERT
[6], considerable improvements were done in building LMs till to Large Language
Models (LLM). Those systems reach competitive performances with State Of
The Art (SOTA) BERT-based models in most of the traditional Natural Lan-
guage Processing (NLP) tasks [10], but they are intrinsically full of issues. Recent
LLMs are very large, averaging from 70B to 175B as for Llama models [27,20]
and GPT-3.5 [4], and a full fine-tuning of these models is actually impracticable



DR-Minerva 3

due to the high computational cost and resources required. Moreover, there is
no open information about the training procedure or the data involved of both
models. Despite those issues, the interest of the scientific community is looking
towards Large Multimodal Model (LMM), which leverage both textual, visual
or audio data. Since Medical Imaging is intrinsically a multimodal domain, and
it deeply focuses on analyzing both images and the related reports [8], Visual
Language Models are the most used within these applications.

Most of the medical VLM rely on SOTA models, such as CLIP [24], LLaVA
[19], and OpenFlamingo [3], an open-source version of Flamingo [2] and via
a fine-tuning procedure, they succeed in developing their corresponding medi-
cal versions, BiomedCLIP [29], LLaVa-Med [16], and Med-Flamingo [21]. These
models share a common pipeline, where images and text are encoded separately
with their respectively visual and textual models, and then merged together to
generate the textual output.

CLIP is trained to learn a multi-modal embedding space by jointly training
both an image encoder and a text encoder to maximize the cosine similarity of
the paired image and text embeddings while minimizing the cosine similarity of
the incorrect pairings [24].

Both LLaVA and Flamingo rely on the pre-trained CLIP visual encoder to
extract the visual features from a given image. LLaVA projects the obtained
visual features to the word embedding space via a linear layer to pass them
to the LM [19]. Analogously in Flamingo, visual tokens are extracted from the
visual features through a “Perceiver Resampler” and then are incorporated with
the textual encoding via a cross-attention layer, which is interleaved between the
frozen pre-trained LM layers [2].

BiomedCLIP [29], LLaVa-Med [16], and Med-Flamingo, follow the training
strategies of the models they are based on, and they are fine-tuned on data sets
containing pairs of medical images and their caption, such as MTB [21], PMC-
OA [17] and then are evaluated with the medical dataset for Visual Question An-
swering (VQA) like VQA-RAD [14], PathVQA [9] and SLAKE [18]. Both VQA-
RAD and SLAKE collect radiologic images, while PathVQA contains pathology
images, and the models are expected to reply to the given question based on the
information derived from the proposed image.

3 System description

In the following sub-sections a detailed description of the proposed system is
given along with the design choices, and the overview of the dataset is provided
along with the metrics used for the evaluation phase.

3.1 RAG-based Flamingo

The overall DR-Minerva architecture is shown in Fig. 1. The system relies on
both the Flamingo architecture [2] and Minerva [23], a novel LLM trained from
scratch on English and Italian data as part of the activities in the PNRR FAIR
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Fig. 1. Overview of DR-Minerva architecture.

Transversal Project 2: “Vision, Language and Multimodal Challenges”4. The
project is an effort made by almost twenty Italian Universities, and the authors
are involved in the research for developing LMMs tailored for specific domains.
We chose Minerva since it is a completely open-source model, since training set,
architecture and weights are freely available, and its training set is half in English
and half Italian, making it suitable for further experiments with the developed
architecture and Italian data.

We used Open Flamingo [3], the open-source version of Flamingo, in the
3B parameters version5. As it is well known, the Flamingo architecture exhibits
good in-context learning capabilities that make it suitable to adapt in diverse
domains [2]. We maintained the CLIP ViT-L/14 [24] as the visual encoder, and
we adopted Minerva-3B6 as language encoder. The overall model is queried using
the prompt reported in Table 1 to instruct the model on how to behave and
generate the desired output.

We developed a suitable RAG component for our system [15] so, at infer-
ence time, the model is provided with an enriched prompt that can improve its
performance. Since the AI models are required to be as precise as possible, in
particular in medical domain, we query DR-Minerva with both the target med-
ical image and a template built from some personal information of the patient
(e.g. age and sex) followed by the history of the patient in order to prevent empty
textual samples. Then the closest clinical cases are retrieved w.r.t. the patient’s
history, and they are attached to the prompt as few-shot learning examples.

4 https://fondazione-fair.it/en/transversal-projects/
tp2-vision-language-and-multimodal-challenges/

5 https://huggingface.co/openflamingo/OpenFlamingo-3B-vitl-mpt1b
6 https://huggingface.co/sapienzanlp/Minerva-3B-base-v1.0

https://fondazione-fair.it/en/transversal-projects/tp2-vision-language-and-multimodal-challenges/
https://fondazione-fair.it/en/transversal-projects/tp2-vision-language-and-multimodal-challenges/
https://huggingface.co/openflamingo/OpenFlamingo-3B-vitl-mpt1b
https://huggingface.co/sapienzanlp/Minerva-3B-base-v1.0
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The RAG module picks (up to) the four closest clinical cases to the query,
and it is build via the LangChain framework7 that in turn uses a FAISS [7]
vector database where data are stored using Linq-Embed-Mistral [13]. This is
recognized as the best model in Massive Text Embedding Benchmark (MTEB)
[22] for Information Retrieval8.

To effectively evaluate RAG performance, we run the evaluation experiments
with and without adding the retrieved examples, at inference time. It is worth
noticing that in the no-RAG configuration, two examples showing two different
scanning modalities are provided to the model to guide it at generation phase.
During the developing process, some experiments were done querying the model
providing just the instruction, i.e. in zero-shot configuration, as it is reported in
section 4.

Table 1. The structure of the prompt is reported as well as the template of the
corresponding expected answers

Type Prompt Response

Modality “Given the following medical images and the patient history,
provide information about the scanning modality.” The image is a MR scan.

Location “Given the following medical images and the patient history,
provide information about the body part shown in the image.” The image shows a head.

Join
“Given the following medical images and the patient history,
provide information about the scanning modality and the body part
shown in the image.”

The image is a MR scan showing a head.

3.2 The Dataset

To develop DR-Minerva, we used a re-arranged version of the MedPix® dataset [26]
9. MedPix® [1] is a multimodal semi-structured dataset of clinical cases released
by the National Institutes of Health (NIH). For each case, a clinical report of
the patient is reported along with some generic information about the disease,
and some medical images with additive information related to both the scanning
modality and the body part.

MedPix® dataset is freely available but the textual information is not pro-
vided in a suitable format for training AI system. The re-arranged version we
used, collects all the information and structure them in two JSON files, namely
the case-topic and the description file. The former collects the clinical cases,
identified by their uid code, all the patient information, such as age, sex and
her/his history, the diagnostic finding and the suggested treatment (case infor-
mation), and general information about the disease from an academic point of
view (topic information). The latter collects the caption of the medical images:
for each image the uid code is reported, along with the scanning modality, the
caption of the image and the body part shown. The aforementioned information
7 https://www.langchain.com/
8 as in https://huggingface.co/spaces/mteb/leaderboard in June 2024
9 https://github.com/CHILab1/MedPix-2.0

https://www.langchain.com/
https://huggingface.co/spaces/mteb/leaderboard
https://github.com/CHILab1/MedPix-2.0


6 I. Siragusa et al.

are reported as key-value pair following the JSON format: values are textual
strings that can be a single word, as for the scanning modality, or a paragraph
as for the differential diagnosis in the case information.

Given the data in a more accessible format, it was possible to select the
relevant pieces of information and consequently create the classification tasks.
We decided to focus on three evaluation setting, namely modality, location and
join. The scanning modality evaluation consist in determining if a given image
is a Computed Tomography (CT) or a Magnetic Resonance (MR) scan, while
the location requires to individuate the body part shown, and the join setting
asks for information about both modality and location. A single location is
assigned to each image and refers to the macro-area shown10 and are Thorax,
Head, Abdomen, Reproductive and Urinary System and Spine and Muscles. The
original dataset considers also General and Nervous System labels, but, since
samples belonging to these categories were few compared to the others, images
belonging to these location were re-assigned by a specialist to the aforementioned
five. There is also worth mentioning that each image is associated to one location
and one scanning modality, while a clinical case can contain multiple images,
obtained with different scanning modality and showing different body part.

Thus, for each clinical case, we considered the history of the patient, his/her
sex and age, and we created a sample document that, within the annotated
images with modality and location labels, constitute the multimodal dataset for
DR-Minerva. A sample of the dataset is reported in the figure below.

Fig. 2. A simple representation of a multimodal sample of the dataset. The actual
structure of the RAG documents and the inference query, derived from the JSON file
of the dataset are reported.

10 a more detailed location information is provided but not considered
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A semi-automatic 80%-10%-10% split was built from the documents keeping
images from the same clinical case in the same split and assuring a balance for
modality and location labels, as it is shown in Table 2. Maintaining the balance,
we further split the training set in train-1 and train-2. Demographics and history
of the patient and the clinical diagnosis from train-1, following ad hoc designed
template, are saved as documents (e.g. .txt file) and used to build the vector
database and used as retriever corpus at inference time; train-2 samples are used
for Flamingo fine-tuning, while both training splits are used for Minerva fine-
tuning. At inference time, the model is queried to provide information about
the modality the image is captured, the body part location shown and both
characteristics (join). At inference time, depending on the evaluation setting, the
designed prompt reported in Table 1 is used, along with the retrieved documents
and the corresponding images, from train-1 split, the inference image and the
textual input, constructed with a template reporting sex, age and history of the
patient, as in Figure 1.

To the best of our knowledge, there is no available dataset and related clas-
sification tasks, that covers such a variety of information regarding scanning
modality and body part. The majority of dataset focuses on a scanning modal-
ity or body part, like chest [12] or brain [11], thus making impossible to develop
more complex tasks where diverse scanning modality and body part are jointly
taking into account and that shares also homogeneous textual information that
can be used for train Multimodal Models.

Table 2. Below an overview of the used dataset is provided. We refer to Reproductive
and Urinary System as RaUS and to Spine and Muscles as SaM (inside the brackets
the number of images is reported).

Train

• Images (1653)
∗ TAC (878)
∗ MRI (775)

• Location
∗ Thorax (263)
∗ Head (742)
∗ Abdomen (264)
∗ RaUS (127)
∗ SaM (257)

Dev

• Images (197)
∗ TAC (84)
∗ MRI (113)

• Location
∗ Thorax (30)
∗ Head (66)
∗ Abdomen (23)
∗ RaUS (20)
∗ SaM (58)

Test

• Images (200)
∗ TAC (100)
∗ MRI (100)

• Location
∗ Thorax (41)
∗ Head (76)
∗ Abdomen (32)
∗ RaUS (11)
∗ SaM (40)

4 Experiments

4.1 Experimental set-up

The whole architecture was developed on server with 96 Intel(R) Xeon(R) Gold
6442Y CPUs and 2 48 GB NVIDIA RTX 6000 Ada Generation.
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We instruction-tuned Minerva for 20 epochs on a single GPU taking approxi-
mately 4 hours: we follow Alpaca-LoRA11 setting and trained the model with all
the training set. Starting from the multimodal split, we created the training sam-
ple by adding to the instruction in Table 1, the patient demographics and history.
We further added the Flamingo’s special tokens <image> and <|endofchunk|>
generating a training set of 4959 samples, three times larger than the original
since samples where created for the three query, namely modality, location and
join.

Due to computational restrictions, we fine-tuned Flamingo, with the fine-
tuned version of Minerva, per 10 epochs over the CPU with batch size of 1,
following the train hyperparameters of Open Flamingo12. The whole process
last approximately 3 days.

As for inference, runs where no RAG context was considered took 20 minutes
on average on a single GPU, while the ones with RAG, approximately one hour
and half and samples with a bigger RAG context that didn’t fit the GPU, where
manually queried in CPU.

4.2 Metrics

The created evaluation tasks can be considered as multi-class classification tasks,
which performances can be evaluated with classical classification metrics such as
accuracy, precision, recall and F1 score, after an output standardization phase.
Since the predicted labels came out from a generative model, it is necessary
to check if the generated output matches with or contains one of the possible
labels: if an exact match is found, a valid predicted label can be associated
with the generated text, otherwise an error label is assigned. This assignment is
necessary for metrics calculation and it provides the information that the model
generates something unmeaning, like a label spelled incorrectly, not generated
at all or invalid, that is the case where a plausible label is generated, but does
not meet the task constrains. E.g. at inference time for modality evaluation, if
the model labels a image as a PET, it would be considered as an error since the
task considers only CT and MR as possible scanning modalities. For precision,
recall and F1 score, macro average is considered.

4.3 Results

In the subsections below are reported the obtained experimental results over
the test set and a relative discussion for each evaluation setting. As for the
evaluation with the fine-tuned version of Flamingo, we report the evaluation after
5 epochs (flamingo-ft-5) and after 10 epochs (flamingo-ft-10). Regardless the
evaluation setting, at least a one-shot example should be provided to the model
to generate a meaningful answer. Experiments with only prompt and query,
not only are unsatisfactory, but also lack of consistency since the model start
11 https://github.com/tloen/alpaca-lora
12 https://github.com/mlfoundations/open_flamingo

https://github.com/tloen/alpaca-lora
https://github.com/mlfoundations/open_flamingo
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generating unmeaning output and it is not following the provided instruction. In
general, 5 epochs of fine-tuning Flamingo are enough for reaching satisfactory
results and further training can decrease its performances.

Table 3. Experimental results for test set in modality evaluation setting. The starred
line represent the inference in a zero-shot evaluation mode.

LLM model Flamingo version RAG Accuracy Precision Recall F1 score
Minerva-3B * flamingo-base * * 0.17 * 0.174 * 0.113 * 0.137*
Minerva-3B flamingo-base 0.36 0.369 0.24 0.278
Minerva-3B flamingo-base x 0.305 0.419 0.203 0.194

Minerva-3B ft flamingo-base 0.405 0.463 0.27 0.341
Minerva-3B ft flamingo-base x 0.425 0.322 0.283 0.264
Minerva-3B ft flamingo-ft-5 0.865 0.894 0.865 0.862
Minerva-3B ft flamingo-ft-5 x 0.88 0.593 0.587 0.59

Minerva-3B ft flamingo-ft-10 0.935 0.94 0.935 0.935
Minerva-3B ft flamingo-ft-10 x 0.82 0.583 0.547 0.551

Modality evaluation setting In table 3 are collected the experimental results
over the test set for modality evaluation setting. In this evaluation setting, no sig-
nificant improvement is provided by the RAG module, while performances highly
benefit from Flamingo fine-tuning and the model fine-tuned over 10 epochs with-
out RAG, reaches the best performances for every considered metric, reaching
at least 0.93 for accuracy, precision, recall and F1 score. Overall these perfor-
mances are not surprising, since this evaluation setting is the easiest one and
can be considered as a binary classification task as it is structured: generally
speaking, CT and MR are not the only possibilities as for scanning modality,
but in the used dataset those are the only two option considered.

In order to verify the effectiveness of using the visual encoder of Flamingo, a
comparison with state-of-the-art approaches was conducted. In fact, in the task
modality the results obtained with Flamingo are higher than those reported at
the state of the art in the paper by Raffy et al. [25] The latter in the diagnostic
modality classification obtained an average Recall value of 92.4% (92.5% for CT
and of 92.3% for MRI) lower than the performance achieved by our model.

Location evaluation setting In table 4 are collected the experimental results
over the test set for location evaluation setting. Given the starting accuracy of
0.03 of the base model with RAG, the best results are obtained with Flamingo
fine-tuned over 5 epochs, reaching an accuracy of 0.72 while precision, recall and
F1 are stable around 0.51. Differently from the modality evaluation setting, this
is a harder task for the model that, despite enhancing its performances via the
usage of RAG, cannot reach highly satisfactory results, compared to the ones in
Table 3, but surprisingly high compared to the starting point.
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In this case further fine-tuning of Flamingo for 10 epochs, is not beneficial for
the model, by contrast we aim that the textual information provided along with
the image for location classification, improves and guide the general-purpose vi-
sual encoder that do not use any segmentation techniques to analyze the provided
images for sub-sequentially classification.

Table 4. Experimental results for test set in location evaluation setting. The starred
line represent the inference in a zero-shot evaluation mode.

LLM model Flamingo version RAG Accuracy Precision Recall F1 score
Minerva-3B* flamingo-base* * 0.0* 0.0* 0.0* 0.0*
Minerva-3B flamingo-base 0.0 0.0 0.0 0.0
Minerva-3B flamingo-base x 0.03 0.292 0.022 0.041

Minerva-3B ft flamingo-base 0.0 0.0 0.0 0.0
Minerva-3B ft flamingo-base x 0.035 0.146 0.015 0.028
Minerva-3B ft flamingo-ft-5 0.285 0.245 0.242 0.142

Minerva-3B ft flamingo-ft-5 x 0.72 0.524 0.507 0.512
Minerva-3B ft flamingo-ft-10 0.39 0.365 0.272 0.225
Minerva-3B ft flamingo-ft-10 x 0.625 0.479 0.464 0.457

Join evaluation setting In table 5 are collected the experimental results over
the test set for join evaluation setting, that is considered yet for the combined
prediction task yet for the separate evaluations of both modality and location.
Here can be clearly be notice how the combined prediction of modality and
location and location alone can be difficult for the model, and how can be sub-
stantially improved with the RAG module, as for ACC-J that grows from 6.50%
to 25.50% and as for ACC-L from 7.50% to 55.00% without any fine-tuning. As
expected, fine-tuning Flamingo leads to the best performances that, as for the
join evaluation setting, that reaches an accuracy of only 0.65: this result, shows
that there is a substantial room for improvement in this evaluation setting and
it confirms that, the multi-label classification task for determining the location
of a given images, i.e. the location evaluation, is really challenging for the model
despite five macro body part are considered.

5 Future works

The final objective of our work is to build an AI system that can effectively help
physicians during the diagnostic process, not only providing a detailed explana-
tion of the proposed clinical image, but also adding some general information,
about the found lesion or the disease. We are currently working on a second
version of the model that, in a purely generative setting, provides a free-text
clinical report, leveraging a re-defined RAG. The idea is to retrieve not only
clinical reports, but also general information about the diseases, coming from
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Table 5. Experimental results for test set in join evaluation setting, EM stands for
exact match and ACC stands for accuracy, PREC for precision and REC for recall.
ACC-M, ACC-L and ACC-J refers to the accuracy with the Modality, Location and
Join evaluation setting respectively. The starred line represent the inference in a zero-
shot evaluation mode.

LLM model Flamingo version RAG ACC-M ACC-L ACC-J PREC-M PREC-L PREC-J REC-M REC-L REC-J F1-M F1-L F1-J
Minerva-3B* flamingo-base* * 0.25* 0.0* 0.0* 0.194* 0.0* 0.0* 0.167* 0.0* 0.0* 0.179* 0.0* 0.0*
Minerva-3B flamingo-base 0.2 0.075 0.065 0.129 0.0255 0.0121 0.133 0.061 0.0303 0.131 0.036 0.0173
Minerva-3B flamingo-base x 0.45 0.55 0.255 0.168 0.517 0.173 0.3 0.396 0.19 0.215 0.426 0.163

Minerva-3B-ft flamingo-base 0.5 0.265 0.19 0.412 0.201 0.0631 0.333 0.176 0.183 0.298 0.127 0.0769
Minerva-3B-ft flamingo-base x 0.51 0.625 0.3 0.417 0.46 0.277 0.34 0.437 0.2 0.284 0.42 0.166

Minerva-3B-ft flamingo-ft-5 0.925 0.425 0.37 0.935 0.621 0.462 0.925 0.365 0.304 0.925 0.338 0.235
Minerva-3B-ft flamingo-ft-5 x 0.89 0.72 0.65 0.597 0.622 0.434 0.593 0.632 0.389 0.595 0.613 0.382
Minerva-3B-ft flamingo-ft-10 0.93 0.55 0.5 0.936 0.512 0.401 0.93 0.382 0.366 0.93 0.362 0.302
Minerva-3B-ft flamingo-ft-10 x 0.845 0.675 0.565 0.588 0.511 0.37 0.563 0.504 0.37 0.564 0.488 0.34

the same dataset or built from high-quality sources as textbooks, and arranged
in a graph database, thus resembling a medical Knowledge Base that can be bet-
ter navigated to reach the relevant documents for report generation. To develop
this model, we will use Leonardo supercomputer13 via a ISCRA-C application.

Another objective relies on the choice of the LLM used: Minerva is trained
from scratch from English and Italian data, and our purpose is to develop and
analyze an Italian version of DR-Minerva via a translation procedure of the
dataset used, i.e. and Italian version of MedPix 2.0.

6 Conclusions

We presented DR-Minerva, a Multimodal Language Model for medical domain
based on Minerva LLM that employs a RAG based approach to enhance its
classification capabilities for classifying a medical image considering the scanning
modality, the body part shown or both. Our experiments reveal that the join
proposed task for determine both modality and location is challenging for the
model and there is room for improvement with the given task setting and for
further generation-related tasks in free-text modality.
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