
On Different Symbolic Music Representations for
Algorithmic Composition Approaches based on

Neural Sequence Models

Felix Schön[0000−0003−0616−3081] and Hans Tompits[0000−0001−5673−2460]

Institute of Logic and Computation E192-03
Technische Universität Wien

Favoritenstraße 9-11, 1040 Vienna, Austria
{schoen,tompits}@kr.tuwien.ac.at

Abstract. Among the different approaches for automated music com-
position, those based on neural sequence models like the transformer
show particular promise. A critical aspect for such approaches is how
given music data sets are represented, or tokenised, for serving as suit-
able inputs for such models, as the choice of representation influences
the quality of the produced output. In this paper, we introduce seven
novel tokenisation techniques for converting MIDI data into numeric se-
quences. We compare characteristics of our tokenisers based on sets of
musical data translated using our approaches. Our results show that
some of our techniques greatly outperform the approaches found in the
literature with respect to different metrics such as sequence length, in-
formation density, or memory requirements. Moreover, to evaluate the
influence of our tokenisation approaches on the quality of the output of
a model, we trained an ensemble of transformer models on the sets of
tokenised musical data and performed a user study to assess the quality
of the generated music pieces. The result of the study shows that the
quality of pieces produced using our most promising techniques is equal
to or outperforms state-of-the-art approaches.

Keywords: Algorithmic Composition · Symbolic Music Generation ·
Transformer Neural Networks.

1 Introduction

The term algorithmic composition (AC) refers to the technique of creating music
by means of a formal set of rules or algorithms. While many different automated
AC methods have been realised [9, 1, 3, 1, 4, 21], the arguably most successful
systems developed in recent years are those based on the transformer neural
network architecture [27], like the MusicTransformer [16] and MuseNet [23].

As the transformer is a neural sequence model, AC methods based on such
an architecture treat music as a language, where a given digital representation
of a musical score is translated into discrete elements, called tokens, which are
then processed by the network model. These sequence-based methods constitute
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symbolic music generation techniques where pieces of music are represented using
sequences of symbols from a specific vocabulary representing, e.g., notes, rests,
or time signature changes.

Now, the particular representation of the discrete tokens critically influences
the network’s ability to learn the underlying structure of the input [13]. Further-
more, representation lengths and vocabulary sizes significantly influence memory
and computing resource requirements, an often limiting factor for real-world ap-
plications.

While research on transformer-based AC methods have for the most part
focused on tuning the machine-learning algorithms [6–8, 17], the question of the
influence on the token representation has received much less attention. Indeed,
notable exceptions in this regard include the works by Huang and Yang [17],
who introduced REMI, a representation that explicitly models note durations,
CP, due to Hsiao et al. [15], which is based on REMI, and Note Tuple [14].

In this paper, we introduce a suite of different symbolic music representation
specifications, also referred to as tokenisation approaches. In particular, our main
focus lies on reducing the average input sequence length while retaining the same
output quality as with representations using longer sequences. More specifically,
we present seven tokenisations, classified into so-called MIDI-like approaches
and note-like approaches, respectively. In the former category, representations
are based on the way the MIDI protocol [20] represents musical data, whilst
tokenisations in the latter category are inspired by the way traditional sheet
music is written. For some of our note-like approaches, we make use of a greater
vocabulary size. As a result, individual tokens can provide more information
than their regular counterparts, e.g., both the pitch of a note and its duration.

Our note-like representations use a similar approach as REMI [15], where
note durations are modeled explicitly. However, in contrast to REMI, we do not
require these durations to be defined on a per-note basis but rather make use of
a running duration, allowing for note durations to apply to all successive notes
until superseded by the next duration. In the CP [15] method, the model archi-
tecture is modified to produce “super tokens” which combine several different
REMI tokens. In contrast, our so-called large-vocabulary representations simi-
larly represent multiple note attributes using a single token, but can be used
without modifying the architecture of a model, making them compatible with
more general models and requiring no additional computational effort.

In order to assess the different tokenisations introduced in this paper, we
compare them with respect to certain parameters, like sequence length, infor-
mation density, and memory requirements, applied on a combination of three
training sets. Moreover, in order to evaluate the quality of pieces generated with
our representations, we trained an ensemble of transformer models on the used
data set and compared their output in a user study. The results show that some
of our representations significantly reduce the average number of tokens needed
to represent a musical sequence—in some cases as much as 40% compared to
commonly used approaches such as REMI—without compromising on the out-
put quality.
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2 Background

We first provide some basic terminology from music theory (for more information
on this subject, cf., e.g., the works of Benward and Saker [2] or Laitz [18]).

In musical scores, notes correspond to a tone of a specific pitch. The higher
the note is situated on the score, the higher is the corresponding pitch. In general,
88 different notes are used, ranging from A0 (the lowest note) to C8. Notes have
a value, which is a property that refers to the duration of the tone it represents.
This duration is relative with regard to the bar it is contained in. A bar is a
grouping of notes with a specific overall duration. Commonly, a bar can fit up
to four consecutive quarter notes or any combination of (simultaneous) notes
that take the same amount of time to play. Using time signatures, the capacity
of a bar can be specified, usually in terms of how many consecutively played
quarter notes it can fit. Rests mark pauses in the composition, and, in a similar
fashion to notes, the length of these pauses is determined by their value. This,
in combination with note values, allows for the construction of rhythm.

Relevant for our purposes is also the MIDI file format [20], which is an in-
dustry standard for connecting electronic music and audio devices. MIDI files
can be used to store musical performance data using sequential blocks of binary
data. These blocks can constitute events, which consist of a time-delta definition,
stating how many ticks (units of time) passed between the last and the current
event, and a message, containing musical performance data. Commonly, MIDI
uses 24 ticks for the duration of a quarter note.

Important for us are only the so-called “note on” and “note off” messages,
indicating the start and end of a note, respectively. These can be used to model,
e.g., the pressing and releasing of a piano key. Here, the message contains infor-
mation about its exact type, the note’s pitch, and its velocity value. The latter
indicates how “loud” or with how much expression a note is played. For the sake
of clarity, we represent MIDI messages using a textual representation, e.g., (note
on A4) for the message indicating the start of A4.

As neural sequence models can only accept numerical input sequences, mu-
sical input compositions need to be translated into such a format before they
can be used to train the models. This process is referred to as tokenisation.
Formally, we are interested in transforming a sequence Ssource = (x1, . . . , xn),
where xi ∈ Vsource, for 1 ≤ i ≤ n, into a sequence Starget = (y1, . . . , ym), where
yi ∈ Vtarget, for 1 ≤ i ≤ m. Here, n and m give the lengths of the sequences,
respectively, while Vsource = {x1, . . . , xs} and Vtarget = {y1, . . . , yt} are vocabu-
laries of size s and t, respectively.

For our purposes, Vsource is the set of all MIDI messages, i.e., Vsource = Vmidi,
where Vmidi := {. . . , (note on A4), (note off A4), . . .}, while Vtarget contains
the tokens used by the specific tokenisation approaches discussed in Section 3.

The resulting sequence Starget can then be used during the training process,
where the model is tasked to learn the underlying probability distribution of
the corpus of input sequences. In the inference step, the model is then used to
generate new sequences. This is done by repeatedly tasking it to predict yi based
on (y0, . . . , yi−1), where y1, . . . , yi−1 are the predictions made in previous steps.
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Finally, the resulting output sequence (y1, . . . , ym) can be translated back into
a sequence (x1, . . . , xn), where xi ∈ Vsource, for 1 ≤ i ≤ n. Using this approach,
neural sequence models can be utilised to compose new musical pieces.

3 Representations

We now introduce our tokenisation approaches for musical sequences. From an
abstract point of view, a tokenisation, or representation, is a function mapping a
sequence of elements from the MIDI vocabulary Vmidi to a sequence of elements
of the vocabulary of the tokeniser, which in our setting are sequences of natural
numbers.

Our tokenisers can be categorised using the following three characteristics:
(i) temporal representation (MIDI-like or note-like), (ii) pitch representation (ab-
solute, relative, or circle-of-fifths), and (iii) vocabulary size (regular or large-
vocabulary).

In what follows, we use the following notation: For any set X, [X]∗ denotes
the set of all finite sequences of elements from X. Then, a tokenisation is a
function f : [Vmidi]

∗ → [Vf ]
∗, where the codomain [Vf ]

∗ of f is a set of sequences
of natural numbers and the set Vf is referred to as the target vocabulary of f .

Based on specific choices of the target vocabulary, we introduce the following
tokenisations:

(i) the relative MIDI-like representation, T rel
midi, with target vocabulary V rel

midi :=
{x ∈ N | 0 ≤ x ≤ 392});

(ii) the circle-of-fifths (CoF) MIDI-like representation, T cof
midi, with target vo-

cabulary V cof
midi := {x ∈ N | 0 ≤ x ≤ 84});

(iii) the regular note-like representation, T reg
note, with target vocabulary V reg

note :=
{x ∈ N | 0 ≤ x ≤ 132});

(iv) the large-vocabulary note-like representation, T lvoc
note , with target vocabulary

V lvoc
note := {x ∈ N | 0 ≤ x ≤ 1450});

(v) the relative note-like representation, T rel
note, with target vocabulary V rel

note :=
{x ∈ N | 0 ≤ x ≤ 219});

(vi) the circle-of-fifths note-like representation, T cof
note, with target vocabulary

V cof
note := {x ∈ N | 0 ≤ x ≤ 73}); and

(vii) the large-vocabulary circle-of-fifths note-like representation, T lcof
note, with tar-

get vocabulary V lcof
note := {x ∈ N | 0 ≤ x ≤ 3307}).

For the sake of clarity, we represent the target vocabularies of our tokeni-
sations using a textual representation rather than their numerical value, e.g.,
“(note on A4)” stands for “77”. Furthermore, the shorthand “(note on _)”
refers to all possible variations of a message, e.g., (note on A0) through (note
on C8). In Table 1 we give a comparison of textual and numerical representations
of tokens for a selection of different representations.

Common to all our representations are the (start) and (stop) tokens which
mark the beginning and end of a composition, respectively, a (pad) token that
does not represent any musical element and is only used to pad sequences to
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Table 1. Textual and numerical representations of the basic tokens used by our to-
kenisers.

Textual Representation Numerical Representation

Common to all Tokenisers

(pad), (start), (stop) 0, 1, 2

Relative MIDI-like Tokeniser T rel
midi

(wait 1) – (wait 24) 4 – 27
(note on -87) – (note on +87) 28 – 202
(note off -87) – (note off +87) 203 – 376

Regular Note-like Tokeniser T reg
note

(wait) 4
(value definition 1) – (value definition 24) 5 – 28
(note play A0) – (note play C8) 29 – 116

Large-Vocabulary Note-like Tokeniser T lvoc
note

(wait 1) – (wait 24) 4 – 27
(note value 2 play A0) – (note value 2 play C8) 28 – 115
...

...
(note value 96 play A0) – (note value 96 play C8) 1348 – 1435

Circle-of-Fifths Note-like Tokeniser T cof
note

(wait) 4
(value definition 1) – (value definition 24) 5 – 28
(octave shift -8) – (octave shift +8) 29 – 45
(note play cof -5) – (note play cof +6) 46 – 57

a specific length, and 15 (time signature _) tokens used to define the time
signature of a bar, determining how much capacity it has. We support time
signatures ranging from 2

16 up to 16
16 . Here, each (time signature _) token

represents exactly one of the supported time signatures. We do not make use of
velocity tokens for our representations but argue that including them would be
straightforward, e.g., by using a set of (velocity _) tokens.

Rather than discuss the individual representations, we will illustrate the dif-
ferences between the three characteristics mentioned above. This way, the rep-
resentations are defined implicitly. We refer to Table 1 for more details on the
basic token types.

The source code for our tokenisation approaches, the code used to train the
models, the weights of the trained models, the generated samples, and the raw
survey results can be found at

https://github.com/FelixSchoen/AIxIA-2024.

Temporal Representation. The MIDI-like temporal representation, as its name
suggests, is based on the way the MIDI protocol [20] represents musical data.
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Fig. 1. A graph of the MIDI-like rep-
resentation for one bar. (1: (wait 6),
2: (note on A4), 3: (wait 6), 4: (note
off A4), 5: (note on C5), 6: (wait
6), 7: (note off C5), 8: (wait 6)).
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Fig. 2. A graph of the note-like rep-
resentation for one bar. (1: (value
definition 6), 2: (wait), 3: (note
play A4), 4: (wait), 5: (note play
C5), 6: (wait), 7: (wait)).

For our tokenisers, we make use of 88 (note on _) tokens to represent the
start of a note, and 88 accompanying (note off _) tokens to mark the end of
it. Furthermore, we make use of 24 (wait _) tokens, which correspond to the
passing of the respective amount of ticks. Using this resolution, we can represent
note values as small as thirty-second triplets—which have a duration of 2 ticks—
using our representation.

Figure 1 depicts a visual representation of the MIDI-like temporal represen-
tation. Here, the beginnings and ends of notes have to be modeled explicitly.

Our note-like representations are inspired by the way traditional sheet music
works. Instead of using a combination of (note on _) and (note off _) tokens
to represent a single note, we use a (value definition _) token to define
the length of the successive note, indicated by a (note play _) token, e.g.,
a (value definition 24) followed by a (note play _) token constitutes a
quarter note. This greatly reduces the risk of invalid tokens, e.g., a (note off _)
for a note that has not been previously opened.

A novel feature of our note-like temporal representation is the notion of a
running value. Instead of having to define a value for each note, the current value
applies to all subsequent tokens until it is replaced. This approach can greatly
reduce the number of tokens in a sequence, reducing the computational costs
associated with training neural sequence models.

In order to represent rests, we make use of a singular (wait) token, which
marks an advancement in time in the current sequence. This token also accepts
a value definition, or—in the case of a running value—makes use of the current
active value.

We allow for consecutive (value definition _) tokens. In this case, the
total amount of ticks is summed up and applied to the succeeding tokens. This
way, notes or rests that last longer than the maximum amount supported by
(value definition _) tokens can be defined.

Figure 2 depicts a visual representation of a note-like representation. In con-
trast to the MIDI-like approach, only the start of a note has to be modeled
explicitly, its duration is given by previous value definitions.
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Pitch Representation. We consider three different pitch representation types:
absolute, relative, and circle-of-fifths type.

With the absolute approach, pitches are defined using only their key number
on the piano, e.g., 49 for an A4.

With the relative approach, a pitch is defined by the distance to its pre-
decessor. This is modeled using 175 (note on _) and the same amount of
(note off _) tokens, indicating the distance of the current pitch to the previ-
ous one within the interval [−87,+87]. As the first note in a sequence has no
predecessor, we define its representation as the distance from the international
standard pitch A4 to it.

With the circle-of-fifths approach, distances between pitches are given by
their distance on the circle of fifths, which is a categorisation of pitch classes.
Any two adjacent classes on this circle, e.g., C and G, or A and E, are exactly 7
semi-tones apart, an interval commonly used in music. We use 12 (note on _)
and the same amount of (note off _) tokens to represent the distance between
two pitches on the circle of fifths and 17 (octave shift _) messages to be able
to model shifts in octaves between two pitches of −8 to +8.

Vocabulary Size. In contrast to the regular vocabulary size, with the large-vocab-
ulary approach, we replace the use of individual pairs of (value definition _)
and (note play _) tokens by a single (value _ play _) token, specifying both
value and pitch of a note. This approach requires a large amount of unique tokens
in order to model all possible combinations. It works analogously for other pitch
representation types, e.g., note value and relative distances can be combined into
a single token.

Note that this approach only works for note-like temporal representations as
here note values are modeled explicitly.

4 Experiments and Evaluation

To compare between our different tokenisers, we conducted an analysis of the sets
of tokenised sequences produced using our approaches. These sets were obtained
by tokenising the MIDI files from the dataset discussed in Section 4.1 below. To
evaluate the differences in quality between neural sequence models trained using
different tokenisation approaches, we conducted a survey on the output of an
ensemble of transformer models trained on the same sets of tokenised sequences.

Note that for the sake of comparison, we include in our analysis both the reg-
ular MIDI-like tokeniser as found throughout literature [22, 23, 16] and a REMI-
like tokeniser similar to the one used by the state-of-the-art Museformer [28] that
does not make use of a running value but is otherwise identical to our regular
note-like tokeniser.

4.1 Experimental Settings

Model Parameters. We use the original transformer architecture as introduced
by Vaswani et al. [27] for our evaluation since we want to isolate the evaluation



8 F. Schön, H. Tompits

of our tokenisation processes and make it as replicable as possible. We used as
hyperparameters a model dimensionality of 256, 1024 neurons per feed-forward
layer, 4 attention heads, 4 encoder layers, and a dropout rate of 0.15 with a
length limit of 1024 for all tokenisers. We utilise the AdamW optimiser [19] with
beta values of 0.9, 0.98, an epsilon value of 1 × 10−9, and a weight decay value
of 0.1. For the learning rate we adapted the original transformer learning rate
with 8000 warm-up steps and a multiplicative factor of 2, training for up to 64
epochs with a batch size of 2 over 8 accumulation steps, resulting in a practical
batch size of 16. The training was conducted on the CLIP cluster1 using four
NVIDIA Quadro RTX 6000 cards per node.

Dataset. In order to test our tokenisation approaches on a wide variety of musical
pieces, we used a combination of three different datasets, namely the piano-
midi.de, the ADL Piano MIDI [10], and the ASAP [11] dataset. We utilised our
music library S-Coda [25, 26] to preprocess and tokenise the MIDI files. Each
piece was first checked for eligibility based on metrics such as number of tracks
and empty bars and then split into chunks of 8 consecutive bars. We used a stride
of 4 bars, i.e., every fourth bar in a piece of the dataset marks the beginning of
an 8-bar chunk used for training.

4.2 Analysis of the Sets of Tokenised Sequences

Table 2 shows the numerical results of several analysis approaches of the sets
of tokenised musical sequences. As their name suggests, the large-vocabulary
approaches exhibit significantly higher vocabulary sizes than their regular coun-
terparts. Note that although larger vocabulary sizes require more computational
resources during the embedding step, for transformer models, the main bottle-
neck stems from the overall length of sequences. The large-vocabulary approaches
perform exceptionally well in this regard. They are able to outperform all other
approaches in this aspect, improving upon the regular note-like representation
by almost 25%, over 40% for the regular MIDI-like representation, and over 50%
compared to the REMI-like representation. Both the regular note-like and rela-
tive note-like approaches outperform the conventionally usedMIDI-like represen-
tation techniques and could serve as a good alternative to their large-vocabulary
counterparts if smaller vocabulary sizes or the inclusion of information such as,
e.g., velocity values is desired.

Interesting to note are the values for the standard deviation. The non-large-
dictionary approaches making use of a circle-of-fifths representation exhibit es-
pecially high values here, suggesting that the range of sequence lengths is quite
high. This has a particularly severe impact, as in a batch, all sequences are
padded to the highest sequence length among them, drastically increasing mem-
ory requirements.

We compared our approaches also with respect to entropy, which is used to
measure the information content of a random variable, where a higher entropy
1 https://clip.science.
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Table 2. Results of the analysis on the different sets of tokenised sequences.

Tokeniser Vocab.
Size

Avg.
Seq. Len.

Std. Dev.
Seq. Len.

Entropy Gini
Coeff.

Final
Loss

Memory
Req.

Survey
Wins

Regular MIDI-like
Tokeniser

219 317.68 148.98 6.60 0.63 0.84 7.52 GB 60%

Relative MIDI-like
Tokeniser

393 317.68 148.98 6.2 0.80 0.75 6.60 GB 37%

CoF MIDI-like
Tokeniser

85 460.90 224.92 4.85 0.72 0.68 6.25 GB 40%

Regular Note-like
Tokeniser

133 252.83 109.93 5.05 0.75 0.99 2.35 GB 57%

REMI-like
Tokeniser

133 385.77 169.36 4.6 0.81 0.65 8.09 GB 56%

Large Vocabulary
Note-like Tokeniser

1451 190.12 84.17 7.30 0.86 1.29 1.95 GB 61%

Relative Note-like
Tokeniser

220 252.84 109.93 4.96 0.84 0.88 3.75 GB 53%

CoF Note-like
Tokeniser

74 329.58 147.55 4.35 0.77 0.84 12.41 GB 37%

Large Voc. CoF
Note-like Tokeniser

3308 190.12 84.17 7.27 0.90 1.2 2.21 GB 48%

indicates a more random distribution and thus a larger amount of information
per observation [24]. It is calculated using the formula

H(X) := −
∑
x∈X

P (x)log2P (x),

where X is a random variable with domain X and P (x) is the probability of
X having value x ∈ X . Lower values of entropy indicate a higher predictability
of next words while higher values imply larger vocabulary sizes and greater
information gain per word.

Both large-vocabulary approaches exhibit significantly higher entropy values
than their regular-vocabulary counterparts. This is in accordance with the de-
creased sequence lengths as each word carries a larger amount of information
for these approaches. On the other hand, the regular circle-of-fifths approaches
carry the least amount of information per word.

Another parameter we considered is the Gini coefficient [12, 5], which can be
used to measure statistical inequality in the distribution of values across a set
of classes. It is given by

G =
1

2n2x

n∑
i=1

n∑
j=1

|xi − xj | ,

where n is the number of classes, xi is the number of values that belong to class
i, and x is the average of values per class. Alternatively, if xi ≤ xi+1 holds, we
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(a) Learning curve of the model trained
using the large vocabulary note-like to-
kenisation approach.

0k 50k 100k 150k 200k 250k
Step

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Lo
ss

(b) Learning curve of the model trained
using the circle-of-fifths MIDI-like to-
kenisation approach.

Fig. 3. Learning rates of two models trained on the same dataset using two different
tokenisation approaches.

can calculate the Gini coefficient as follows:

G =
1

n

n∑
i=1

(2i− n− 1)xi ·

(
n∑

i=1

xi

)−1
.

The Gini coefficient provides a measure of how equally observations are dis-
tributed over a number of classes. G = 0 indicates a perfectly equivalent dis-
tribution while G = 1 indicates a maximally imbalanced distribution, e.g., all
samples belonging to a single class.

The Gini coefficient is relatively high for all our representation approaches,
suggesting that a few single tokens are heavily prioritised over others. We argue
that this most likely stems from the repeated usage of the (wait) token which
is essential for the construction of rhythm and temporal resolution. Although
in practice this did not pose problems, future variations of our representations
could try to tackle this shortcoming. We note that, for the calculation of the Gini
coefficient and the entropy value, we only considered tokens of the vocabulary
that were used in the dataset in order not to dilute the results due to a large
number of unused tokens.

We trained an ensemble of nine transformer models on the dataset, for each
of the representation techniques, respectively. For the sake of reproducability, we
report the final loss values achieved for each of the models after the last epoch.
Note that due to the differences in vocabulary size between the approaches, the
loss values are not directly comparable. This is reflected in Figure 3, showing
learning curves for two of the models. Although the learning curve in Figure 3b
seems to outperform the one in Figure 3a, in practice the former model exhibits
significantly higher output quality compared to the latter.
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Lastly, we include the highest reported memory usage during the training
of the models using the respective representation (cf. Section 4.1 for the ex-
act hyperparameters used). In contrast to the loss values, these values are di-
rectly comparable and provide important insights. Here, our large-vocabulary
approaches perform exceptionally well, reducing the memory requirements by
approximately 70% compared to the regular MIDI-like- and REMI-like repre-
sentation. Despite the large difference in average sequence length, the memory
requirement of the regular note-like representation is comparable to our large-
vocabulary approaches. We argue that this is due to the overhead induced by the
significantly larger vocabulary size. Increasing the number of layers would likely
result in the regular note-like approach consuming drastically more memory as
the space requirements are dependant on the square of the sequence lengths.

4.3 Evaluation of the Quality of the Generated Music

In order to evaluate qualitative differences between pieces generated by the mod-
els trained on the different sets of tokenised sequences, we performed a survey
involving 11 participants. For each of the nine models, we generated 64 compo-
sitions. Here, the models were only primed with the (start) token and tasked
to predict new tokens until the (stop) token or a length of 1024 is reached.
Note that we did not remove any failure samples in this process as this could
potentially skew the results of the survey.

The participants were provided with eight pairs of two compositions, ran-
domly sampled from the output of one of the trained models. Note that the ori-
gin in a pair of samples was mutually exclusive. We then asked the participants
to select which of the pieces they believed to be more musically sophisticated,
interesting, or less computer-generated. Table 2 shows the percentage of match-
ups won for each of the tokenisers. As the pieces were randomly drawn for each
instance of the survey, we allowed for multiple submissions. We asked the par-
ticipants to mark their entries as repeats in this case. In total, we received 17
submissions comparing 272 compositions generated by our models.

The survey shows that with 60.6% of 33 match-ups, our large-vocabulary
note-like tokeniser performed best. This is an encouraging result as it suggests
that the quality of pieces produced using this technique is on par or better
compared to pieces produced using more traditional approaches, even though
the sequence length is greatly reduced.

All of the regular MIDI-like tokenisers, the regular note-like tokeniser, and
the REMI-like tokeniser showed good promise as well, winning 60% of 30, 57.1%
of 28, and 56.3% of 32 match-ups, respectively. Contrary to our assumptions, the
relative and circle-of-fifths approaches did not perform as well, often exhibiting
frantic jumps between notes and disharmonic melodies.

Figure 4 depicts score representations for two samples generated by two of
our models. More specifically, Figure 4a shows a piece generated by our large-
vocabulary note-like model which exhibits typical rhythmic and melodic struc-
ture. On the other hand, in Figure 4b, a piece generated by the circle-of-fifths
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(a) Score representation of a piece generated using the
large vocabulary note-like tokenisation approach.
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(b) Score representation of a piece generated using the circle-of-fifths MIDI-like
tokenisation approach.

Fig. 4. Score representation of two pieces generated by models trained on the same
dataset using two different tokenisation approaches.

MIDI-like model is given. Here, erratic jumps in pitch and inconsistent rhythm
can be observed.

5 Conclusion

In this paper, we introduced seven novel tokenisation techniques for symbolic
music generation. These techniques can be categorised into two main categories:
(i) MIDI-like tokenisers and (ii) note-like tokenisers. Our large-vocabulary note-
like tokeniser shows particular promise. It makes use of a note-like temporal
representation style while using a large vocabulary of tokens to indicate pitch
and value of a note using a single token. This way, we are able to reduce the
average length of a sequence needed to represent a musical composition by more
than 40% compared to the most commonly used and the REMI-like approach.

Our user study shows that the output quality of models trained using our
large-vocabulary note-like tokeniser is not negatively impacted by the reduction
of sequence lengths.

Concerning future work, we plan on adapting our tokenisers to a multi-track
setting, potentially supporting a variety of instruments. Here, the large-vocab-
ulary approaches could be extended by additional sets of tokens representing a
specific instrument or track. Furthermore, for the note-like approaches, an idea
analogous to the running value could be implemented, specifying the current
instrument for all subsequent messages until replaced.
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