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Abstract. Adopting opaque machine learning predictors, which achieve
very high predictive performance, often necessitates incorporating sym-
bolic knowledge-extraction techniques. These techniques aim to explain
the opaque predictions, thus making them applicable in high-stakes sce-
narios. The development of symbolic knowledge-extraction procedures is
evolving alongside the dynamic machine learning landscape. However,
there are recurring drawbacks that tend to be overlooked or addressed in
a suboptimum way. Common examples include the non-exhaustiveness
of the global explanations generated for a black-box predictor or the
unwanted discretisation introduced in the prediction of continuous vari-
ables. To tackle these challenges, in this work, we introduce the HEx
algorithm, its formalisation and its properties. This algorithm aims to
obtain a symbolic, hierarchical representation of the knowledge acquired
by opaque machine learning classifiers and regressors, always ensuring
knowledge exhaustiveness and avoiding any output discretisation. Ex-
periments demonstrating the superior capabilities of HEx compared to
state-of-the-art competitors in terms of predictive performance, com-
pleteness, and human readability are presented.

Keywords: Explainable artificial intelligence · Symbolic knowledge ex-
traction · PSyKE

1 Introduction

Inherently interpretable models, where humans can understand the reasoning
behind the outputs, may not be sufficiently complex to accurately capture the
nuances of the domain, resulting in suboptimum predictive capabilities. Con-
versely, there are machine learning (ML) predictors with a high degree of com-
plexity that enables them to achieve superior predictive performance. However,
these models lack interpretability, especially concerning internal decision-making
processes and input feature exploitation. This leads to an impossibility for hu-
man users to trace and thus understand the exact workflow leading to a given
outcome starting from an input query [8]. Despite the unfortunate proof of an in-
verse proportionality relationship between human interpretability and predictive
performance [10, 30], there is a growing demand for interpretable and explain-
able predictions. This demand has resulted in the rejection of opaque models
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in critical decision systems, despite their capability to provide highly accurate
predictions [17, 18]. The criticality of a system is determined by the extent to
which important aspects of human lives are affected by the predictive system.
For example, critical domains include finance, security, and medicine. In such
contexts, transparent models are preferred over opaque ones, even if they may
have limitations in predictive performance.

To keep the advantages coming along with complexity and opaqueness, dif-
ferent strategies have been proposed by the explainable artificial intelligence
community [5, 22]. One consists of performing symbolic knowledge extraction
(SKE; [26]) to provide human-interpretable surrogates of the opaque ML predic-
tors. These surrogate models are interpretable for humans and preserve as much
as possible the predictive capabilities of the original, opaque predictor.

SKE techniques recently proposed in the literature are mostly designed to
be applied upon specific sorts of ML models, typically artificial neural networks
[11, 15, 24, 43]. The adoption of model-agnostic extractors seems to have lost
momentum, despite the increasing diversity of available ML models. When SKE
techniques are tailored specifically to narrow clusters of opaque predictors, it can
result in a fossilisation of the decision-making system. For instance, a system
leveraging a fuzzy neural network may be empowered with the SKE algorithm
proposed in [43] to achieve human interpretability. As a result, minimum changes
in the model architecture (e.g., another kind of neural network or switching
to a random forest) would result in the compelling modification of the SKE
technique, which is only suitable for fuzzy neural networks. Conversely, model-
agnostic extractors are not strictly bound to specific subsets of ML predictors.
Therefore, they enable the avoidance of these unwanted dependencies.

Accordingly, we introduce here the HEx algorithm, a novel task- and model-
agnostic SKE procedure to explain opaque ML predictors accepting continuous
input features. HEx provides a symbolic human-interpretable model whose pre-
dictions are drawn according to a tree-based hypercubic partitioning of the input
feature space [38, 40]. Our experiments show that opaque models of any kind
can be explained via HEx with higher predictive performance, completeness and
human-readability extent than state-of-the-art knowledge-extraction techniques.

The manuscript is organised as follows. Related works are described in Sec-
tion 2. The design and implementation of the novel HEx algorithm for hier-
archical symbolic knowledge extraction are reported in Section 3. Experiments
assessing the effectiveness and usability of HEx compared to state-of-the-art
competitors are detailed in Section 4. Conclusions are finally drawn in Section 5.

2 Related Works

When facing opaqueness deriving from sophisticated algebraic calculations con-
stituting the core of sub-symbolic predictors, SKE procedures provide human
interpretability through a symbolic approximation of the original, opaque predic-
tor behaviour [28, 42]. The literature offers a wide range of different alternatives,
even though these are mostly constrained in their actual applicability. The most
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appropriate SKE technique to adopt in a specific scenario should be identified in
the light of the candidates’ peculiarities, constraints and overall achieved qual-
ity. Beyond mandatory requirements, also the kind of knowledge outputted by
SKE methods should be taken into consideration. In particular, shape and ex-
pressiveness of the knowledge are relevant aspects to analyse. Knowledge shapes
typically adopted are lists and trees of rules. The expressiveness of knowledge
items ranges from propositional if-then rules to more sophisticated M -of-N ,
fuzzy and oblique rules.

Requirements of SKE techniques. The three main requirements constrain-
ing the applicability scope of SKE techniques are detailed in the following.

The degree of inspection inside the internal structure of the opaque model
during the knowledge extraction is defined translucency. There are three distinct
classes of SKE algorithms based on translucency, namely, decompositional, ped-
agogical and eclectic [2]. Decompositional SKE procedures analyse the model’s
internal parameters, for instance, support vectors in a support vector machine or
connection weights in neural networks. Pedagogical extractors only consider the
input/output response of the opaque predictor to generate symbolic knowledge.
Eclectic procedures combine elements of both categories. It is worth emphasising
that decompositional techniques are bounded to individual classes of black boxes,
e.g., only tree ensembles, or fuzzy neural networks, or any kind of feed-forward
neural networks for the most general procedures. Conversely, pedagogical models
are model-agnostic and thus present fewer applicability constraints.

SKE techniques may be applicable only in some domains, depending if they
are compatible only with opaque classifiers, only with regressors, or with both
categories. The majority of extractors are limited to classification tasks [13, 16,
46, 48], with some exceptions for regression tasks [23, 43, 45]. A very narrow
subset of extractors results to be task-agnostic [7, 27, 35, 37, 44].

Depending on the specific peculiarities of SKE algorithms, these may be
compatible with different subsets of input features. More in detail, feature kinds
typically accepted are binary and/or discrete and/or real-valued. It is worth
highlighting that it is possible to adopt conversion routines to map features into
the desired domain (e.g., one-hot encoding, discretisation and binarisation meth-
ods). These processing phases should be performed before training the opaque
predictor and performing SKE.

Evolution of Translucency over Time. A review of recent literature about SKE
shows an increasing propensity to design novel decompositional techniques. For
instance, during the last two years the following knowledge extractors were pro-
posed: 2 pedagogical algorithms for regression tasks [25, 31] and 1 for classifi-
cation tasks [12]; 1 decompositional extractor for decision tree ensembles [29], 1
for support vector machines [3] and 6 for neural networks. More in detail, these
latter are explicitly designed for convolutional neural networks [24], fuzzy neu-
ral networks [11, 43] or networks with exactly four layers [15]. The remaining
2 are more general and assume no constraints on the network structure [4, 20].
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All these decompositional extractors are only applicable to classification tasks
except the one proposed in [43].

An analogous trend may be observed in 2021 (10 decompositional and 3 ped-
agogical algorithms). As a result, it can be noticed that recent SKE procedures
are mostly decompositional and focused on opaque classifiers. Given the undeni-
able general applicability of pedagogical techniques, we argue that the research
community could benefit from the proposal of novel algorithms overcoming the
hindrances of existing ones.

State-of-the-Art Pedagogical SKE Techniques. We conclude this section
by briefly reviewing state-of-the-art pedagogical extraction algorithms inspiring
HEx and adopted as benchmarks in our experiments.

The Iter SKE algorithm can be adopted to explain opaque regressors accept-
ing continuous input features [23]. It is based on a bottom-up iterative strategy
leading to the construction of a set of hypercubes within the input feature space.
Cubes are disjoint and possibly non-exhaustive. Predictions are made based on
the output values associated with the cubes enclosing the queries. Cubes’ out-
put values are calculated during the knowledge extraction and they are constant
values, therefore a discretisation of the predicted outputs is introduced.

Other SKE techniques applicable to explain opaque regressors via disjoint
hypercubes are GridEx and GridREx [31, 41] also accepting only continu-
ous input features. They induce a recursive, top-down partitioning of the in-
put feature space. As in the case of Iter, explainability is obtained through a
human-interpretable hypercubic partitioning. However, GridEx and GridREx
perform an input feature analysis to prune the least relevant features from the
output knowledge. Only GridREx avoids prediction discretisation by adopting
linear combinations of the input variables instead of constant values as cube
outputs.

The CART algorithm may be exploited to induce a decision tree explain-
ing the outcomes of opaque classifiers or regressors, without constraints on the
input feature kind. The output of CART is a binary tree where leaves are asso-
ciated with constant predictions and internal nodes are constraints on the input
variables [7]. Complete paths from the tree root to each leaf correspond to the
explanations for the opaque outcomes.

3 Hierarchical Knowledge Extraction

HEx (Hierarchical EXtractor) is a pedagogical SKE technique applicable to
opaque predictors operating on continuous attributes. Its algorithm merges the
advantages of existing SKE techniques to achieve better predictive performance
and conciseness than its competitors. More in detail, it exploits the hierarchi-
cal nature of tree-based systems and the human interpretability of hypercubes.
Similarly to CART, it can explain opaque classifiers as well as regressors and
the hypercubes it identifies can be associated with constant values, as in Iter,
or with linear combinations of the input variables, as in GridREx.
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Given the domain of input features accepted by HEx, the hypercubes it
identifies are described in terms of interval-inclusion constraints over continuous
input attributes. Hypercubes are not disjoint, since smaller cubes may be en-
closed within a bigger one. Nonetheless, predictions based on HEx hypercubes
are not ambiguous, because cubes are ordered. Inner cubes have the highest pri-
ority than outer ones when predicting a query. Therefore, if a query is enclosed
within more than a cube, only the innermost is considered.

The hierarchical, hypercubic partitioning provided by HEx is always exhaus-
tive since the last identified cube is used as default cube. All queries not covered
by other cubes are thus enclosed by it.

HEx requires a predictor and a training set to be provided by users. The
training set may be the same as the one previously used to train the opaque
model. During the knowledge extraction phase, HEx supports classification by
finding the most frequently predicted class label inside each hypercube and by
using it as an interpretable prediction for all queries falling inside that cube.
Similarly, in regression tasks where constant outputs are used, the average of
all opaque predictions within each cube is used. Otherwise, when expressing
outputs as linear combinations of the input variables, a linear fit within each
cube is performed to correlate the training inputs with the opaque predictions
provided by the ML model.

The human-interpretable knowledge provided by HEx is generated by con-
verting each hypercube identified during the extraction phase into an if-then rule
having as precondition a formal description of the hypercube boundaries and as
postcondition the associated prediction. The conversion is performed methodi-
cally from the innermost cubes to the default one.

Algorithmically, HEx partitions the input feature space according to a top-
down strategy, preserving information about parent cubes and corresponding
child cubes through a tree structure. It differs from existing hypercube-based
extractors since its decisions are grounded on the notion of gain between cubes.
More in detail, when splitting a parent cube, the gain from replacing the ancestor
cube with its child sub-cubes is computed, and only descendants showing a
favourable gain are retained. The gain is always calculated between a cube and
its children/descendants.

To give an abstract evaluation of the quality of symbolic knowledge generated
by HEx, we refer to the 3 most used proxies for knowledge quality: predictive
performance, readability and completeness [14, 19, 32, 33, 47]. HEx complete-
ness is ensured by design. Its predictive performance may be measured through
the same scoring metric adopted for the underlying ML model, by comparing the
HEx predictions to the data set ground truth or the opaque predictions. Finally,
the human-readability extent is typically assessed based on the symbolic knowl-
edge size, e.g., the number of items it contains. In the case of HEx, readability is
bounded to the quantity of identified hypercubes, by considering that readability
decreases if the number of cubes increases. Thanks to the knowledge-extraction
strategy it employs, HEx can generate more concise knowledge pieces (i.e., with
fewer items) than other state-of-the-art competitors.
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The overall predictive performance and readability exhibited by the knowl-
edge extracted with HEx depends on the user-defined hyper-parameters pro-
vided as inputs, clearly impacting the steps executed during the algorithm. These
parameters and the HEx algorithm are detailed in the following subsections, re-
spectively. It is important to notice that the user-defined parameters of HEx
can be automatically tuned via the existing PEDRO procedure without any
modification [31].

HEx Hyper-Parameters. The HEx knowledge extractor requires 4 input
parameters to be tuned by users: the maximum depth of its recursions (δ), the
minimum quantity of samples to consider within each hypercube (m), the error
threshold deemed acceptable during the extraction (θ), and the strategy to adopt
at each recursion to partition the input feature space (S1, . . . , Sδ).

δ is the upper-bound for the number of recursive splits to perform. It is
defined as an integer number greater or equal to 1, formally: δ ∈ N \ {0}. For
δ = 1 only a single partitioning step is performed. This parameter is an upper-
bound since the algorithm may pre-emptively terminate if all hypercubes found
during recursion i, i < δ have a predictive error below θ. δ is strictly bounded
with the overall human-interpretability extent of the knowledge outputted by
HEx, since growing δ values generally lead to larger quantities of identified
hypercubes and therefore to larger knowledge pieces.

m is the lower-bound for the number of training instances to consider when
creating a hypercubic partition. It is defined as an integer number greater or
equal to 1, formally: m ∈ N\{0}. After the cube creation, if it contains less than
m training instances, the training data set is augmented by generating random
samples inside the cube, up to the user-defined value. Large values of m are
employed to obtain more robust results in presence of outliers.

θ is the user-defined error threshold adopted to discern between hypercubic
regions that need to be refined during successive recursive iterations of HEx
and regions to be considered final, i.e., those having predictive error below the
threshold. The definition of θ depends on the task at hand. When executing
classification, θ is a threshold on the cubes’ classification accuracy. It is thus de-
fined as a real number in the [0, 1] interval. On the other hand, when performing
regression, it represents a threshold on the mean absolute error of hypercubes.
Therefore, θ ∈ R+.

θ represents a sensitivity parameter controlling the overall predictive perfor-
mance of the knowledge provided by HEx. Small values of θ indicate a priority
for maximising predictive performance, potentially sacrificing human readability.
This occurs because HEx recursions may not be terminated prematurely before
reaching δ. This parameter is also used to check if adjacent hypercubes may be
merged and if there is a gain in splitting a parent cube into child sub-cubes, as
detailed in Section 3.

S1, . . . , Sδ are the splitting strategies to adopt during recursive iterations
1, . . . , δ. Two different strategies are supported by HEx, namely, fixed or adap-
tive. Fixed strategies are parametrised with an integer value, k, identifying the
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Fig. 1: Example of HEx instances applied to an artificial regression data set.

number of partitions that are created along every input variable. In this case,
a parent cube is split into kd child sub-cubes, by assuming d input features.
Nonetheless, the actual number of produced cubes may be decreased after the
HEx merging phase. Differently, adaptive strategies are parametrised with a
monotone increasing function f defined as f : [0, 1] → N \ {0} and generating
f(r) partitions along input dimensions having relevance equal to r. This allows
for conducting a sensitivity analysis on the impact of individual input features
on predictions and subsequently performing a finer slicing on the most important
ones. For the least important features, it is possible to select a coarser partition-
ing as well as to avoid any slicing. In this case, input dimensions that are never
sliced are considered irrelevant to the predictions, and therefore, they are not
included in the generated symbolic knowledge. In other words, these features are
not useful to explain the predictions of the underlying opaque model.

We highlight here that the feature relevance may be assessed through any
procedure external to HEx, for instance via the f_classif and f_regression
functions of the sklearn.feature_selection Python library. Other adequate
methods may be found in the literature [1, 49, 50]. The only requirement of
HEx is that the feature importance ranking should be normalised in the [0, 1]
interval. The most relevant feature is thus associated with a value of 1.

HEx Algorithm. The HEx algorithm applied to explain a predictor P trained
on a data set D is summarised in Algorithm 1. We point out here that G rep-
resents a grid object, concisely enclosing both concepts of maximum depth and
splitting strategies. In other words, G encapsulates the δ and S1, . . . , Sδ user-
defined parameters.

The HEx algorithm starts by identifying the surrounding hypercube, i.e., the
minimal cube enclosing all the training instances. The root of the tree induced
by HEx is therefore initialised with the surrounding cube, with no parent and
no children. Then, the following steps are recursively executed for the tree root
and any child node successively created (the current node, in the following):
(i) the cube associated with the current node is split according to the strategy
chosen by the user, as described by the grid G; (ii) the data set D is augmented
to have at least m instances inside each created sub-cube. New samples are
randomly generated and the predictor P is employed as an oracle to predict the
corresponding outputs; (iii) the sub-cubes are merged, if possible. The merging
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Algorithm 1 HEx pseudocode
1: function HEx(P , D, G, θ, m)
2: H0 ← the minimal hypercube including all the samples of D
3: root← NewNode(H0,∅, P,D, θ)
4: Split(1, root, P,D,G, θ,m)
5: Π ← post-ordered depth-first search from root
6: Π ← {node.cube | node ∈ Π ∧ node.gain}
7: if D \

⋃
H∈Π

H ̸= ∅ then Π ← Π ∪ {H0}

8: return Π
9: function NewNode(H, parent, P , D, θ)
10: node← new Node()
11: node.cube← H node.parent← parent node.children← ∅
12: node.gain← Gain(node, P,D, θ)
13: return node
14: function Gain(node, P,D, θ)
15: parent← node.parent ▷ Outer cube
16: while !parent.gain do
17: parent← parent.parent

18: if task is classification ∧ output of node.cube ̸= output of parent.cube then return true
19: else if task is regression then
20: eo ← PredictiveError(parent.cube \ node.cube, P,D) ▷ Outer cube error
21: ei ← PredictiveError(node.cube, P,D) ▷ Inner cube error
22: if eo − ei > 0.6 θ then return true

23: else return false

24: function PredictiveError(H, P , D)
25: return the average predictive error of {P (x) | x ∈ H ∩D}
26: function Split(i, node, P , D, G, θ, m)
27: if i > depth of G ∨ PredictiveError(node.cube) ≤ θ then return
28: Π ← all the partitions of node.cube according to the i-th level of grid G
29: D ← D ∪

⋃
H∈Π

GenerateSamplesIn(node.cube,D,m)

30: Π ←Merge(Π,P,D, θ)
31: node.children←

⋃
H∈Π

NewNode(H,node, P,D, θ)

32: for all n ∈ node.children do
33: Split(i + 1, n, P,D,G, θ,m) ▷ Recursion
34: function Merge(Π,P,D, θ)
35: C ← AdjacentCubes(Π)
36: while (|C| > 0) do
37: (H∗

1 , H
∗
2 )← argmin

(H1,H2)∈C

{ PredictiveError(H1 ∪H2, P,D) }

38: H ← H∗
1 ∪H∗

2
39: if PredictiveError(H, P , D) ≤ θ then
40: Π ← Π \ {H∗

1 , H
∗
2 } ∪ {H}

41: C ← AdjacentCubes(Π)
42: else return Π
43: return Π
44: function GenerateSamplesIn(H,D,m)
45: c←| H ∩D |
46: if c < m then return { (m− c) random points in H }
47: else return ∅
48: function AdjacentCubes(Π)
49: return

⋃
H∈Π

{
(H,H′) |

(
H′ ∈ Π \ {H}

)
∧ (H and H′ are adjacent)

}

phase consists of iteratively trying to unify pairs of adjacent cubes until there are
eligible pairs. Two cubes are merged only if the resulting cube has a predictive
error below the user-defined θ threshold; (iv) the resulting cubes are encapsulated
within tree nodes, having the current node as parent; (v) the gain of new nodes
is calculated. This measure is a Boolean value indicating whether preserving
a child node improves predictive performance or not. It is calculated relative
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to the nearest ancestor with a positive gain. In other words, ancestors with
negative gain are disregarded as they will not contribute to the resulting symbolic
knowledge. The gain is defined differently based on the performed ML task. For
classification, a child node has positive gain if its cube is associated with a
class label that is different from that of the closest ancestor (i.e., the child cube
identifies a region where a different prediction is dominant). For regression tasks,
a child node has positive gain if the predictive error of its cube (ei) is smaller
than that of the closest ancestor (eo). More in detail, this inequality should hold:
eo − ei > 0.6 θ; (vi) the workflow is repeated for each one of these child nodes
if their cubes have predictive error above the θ threshold, until the maximum
user-defined depth.

After the tree induction, all nodes are linearised according to a post-ordered
depth-first search starting from the root. However, the root is not included in
the ordered list at this stage. All nodes having negative gain are discarded;
the cubes associated with the remaining nodes are translated into ordered sym-
bolic rules composing the output human-interpretable knowledge. As a last step,
HEx checks if the knowledge covers the whole input feature space. If not, the
surrounding cube is also translated into a rule and queued to the knowledge.
The final rule of knowledge is always generalised to a default rule.

Figure 1 exemplifies the execution of HEx applied to a synthetic regression
data set with two continuous input features (x and y, see left panel). An instance
of HEx with θ = 0.5 and δ = 1 is depicted in the middle panel of Figure 1. A
fixed splitting strategy performing 2 splits for each input dimension has been
adopted. As a result, 4 hypercubes are identified, one containing no training
samples (top-left), one with a predictive error e < θ (e = 0.33; bottom-right)
and two with an error above θ. In this case, the cube with no samples is merged
with an adjacent cube (top-right) without losses in the predictive performance.
The resulting cubes are finally translated into knowledge with as many if-then
rules.

An instance of HEx with δ = 2 and the same other parameters as described
above is shown in the right panel of Figure 1. The second recursion of HEx starts
after the merging of the two top cubes. In this scenario, the bottom-right cube is
no further partitioned, provided its error is below θ. The bottom-left cube is split
into four sub-cubes, vertically merged pairwise. One of these merged sub-cubes is
marked with positive gain (the leftmost, e = 0.17), the other with negative gain.
As a result, in the final knowledge there is a rule corresponding to the inner region
(0.00 < x < 0.25, 0.00 < y < 0.50) followed by a rule derived for the closest par-
ent region having positive gain (0.00 < x < 0.50, 0.00 < y < 0.50). Analogously,
the top merged cube is split into four sub-cubes and only one is marked with
positive gain (the top-right one, with e = 0.80). All the others are marked with
negative gain and neglected when generating the output knowledge. The overall
knowledge of the HEx instance with δ = 2 has five rules corresponding to as
many hierarchical hypercubes, with a weighted average predictive performance
of 0.61, in contrast to the 3 rules and the average error of 0.73 exhibited by the
HEx instance with δ = 1. This constitutes an example of the fidelity/readability
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Listing 1 Example of knowledge extracted with HEx for the Iris data set.
iris is Setosa if petal length <= 1.93
iris is Virginica if petal length > 4.73
iris is Versicolor otherwise

Listing 2 Example of knowledge extracted with HEx for the Adult data set.
income is > 50K if education -num is > 13
income is <= 50K otherwise

(a) Iris data set. (b) Adult Income data set.

Fig. 2: Decision boundaries identified by HEx.

trade-off typically observed for knowledge-extraction techniques, where an en-
hancement in predictive performance is often counterbalanced with a worsening
in the knowledge human interpretability [10, 30]. Examples of classification rules
extracted with HEx are reported in Listings 1 and 2 for the Iris [21] and Adult
Income [6] data sets, respectively. The corresponding decision boundaries are
shown in Figures 2a and 2b, respectively.

4 Experiments

The effectiveness of HEx has been assessed through experiments involving clas-
sification and regression tasks. It has been compared to state-of-the-art SKE
techniques available in the PSyKE framework [9, 34, 39] applied to different
black boxes. Knowledge quality has been evaluated on human readability (i.e.,
knowledge size), input space coverage and F1 or R2 scores. The Qs score [36]
is also shown as a concise quality assessment encompassing the aforementioned
indices (low scores are associated with good quality). Results reported here are
averaged over 10 runs. Given the standard deviations close to 0, we only report
averages.

Our classification case study is based on the Adult Income data set [6]. It com-
prises 14 input attributes and 48 842 instances representing information about
adult persons, whereas the output feature is a binary label expressing if an indi-
vidual is likely to receive an income below or above 50 000 dollars. Three different
black-box classifiers have been trained on the Adult Income data set, namely,
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Table 1: Results for the Adult Income data set.

CART CART CART Iter GridEx HEx
max depth = 1 max depth = 2 max leaves = 3

GB F1 0.65 0.68 0.67 0.66 0.66 0.66
Rules 2.00 4.00 3.00 8.20 3.00 2.00
Coverage 1.00 1.00 1.00 0.86 1.00 1.00
Qs 0.70 1.28 1.00 3.19 1.02 0.68

RF F1 0.60 0.67 0.67 0.65 0.66 0.66
Rules 2.00 4.00 3.00 7.90 3.00 2.00
Coverage 1.00 1.00 1.00 0.83 1.00 1.00
Qs 0.80 1.31 1.00 3.24 1.02 0.68

DT F1 0.60 0.67 0.67 0.63 0.66 0.66
Rules 2.00 4.00 3.00 8.40 3.00 2.00
Coverage 1.00 1.00 1.00 0.79 1.00 1.00
Qs 0.80 1.31 1.00 3.81 1.02 0.68

a gradient boosting (GB) predictor, a random forest (RF) and a decision tree
(DT). A train/test splitting with a 1:1 ratio has been performed. The training
set has been employed for hyper-parameter tuning via 3-fold cross-validation.

Six knowledge extractors were successively applied to each one of these black
boxes, namely, Iter, GridEx, HEx and three instances of CART.Knowledge
size, coverage and F1 scores with respect to the data set ground truth are re-
ported and compared in Table 1, with best values highlighted in bold.

It can be noticed that HEx provides knowledge pieces with only two rules
(one for the positive class and one for the negative) with an F1 score of 0.66,
slightly lower with respect to the highest score of 0.68 observed for CART.
However, this CART instance produces 4 rules, thus denoting a stark worsen-
ing in the human-readability extent. The comparison between Iter and HEx
is favourable for the latter, achieving the highest F1 score, readability and com-
pleteness simultaneously. Also, the comparison with GridEx privileges HEx,
since they have the same coverage and F1 scores, however HEx outputs more
concise knowledge bases. In general, by observing the Qs scores computed for
the HEx knowledge pieces, our proposed algorithm results capable of providing
the highest quality knowledge.

Our regression case study employs six data sets from real use cases taken from
the StairwAI EU Project and composed of up to 5 continuous input features.
A different DT with maximum depth equal to 50 and an unbounded number of
leaves has been trained for each data set. The pool of SKE algorithms adopted for
the data sets is composed of CART, GridEx, GridREx and HEx. Iter proved
incapable of providing comparable results, and therefore it is not considered in
this case study.
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Table 2: Results for the StairwAI data sets.

DT CART GridEx GridREx HEx
Data set R2 R2 Rules Qs R2 Rules Qs R2 Rules Qs R2 Rules Qs

#1 1.00 0.93 4 0.299 0.64 2 0.713 1.00 2 0.009 1.00 2 0.009
#2 0.92 0.89 4 0.458 0.69 2 0.627 0.90 2 0.199 0.90 2 0.199
#3 1.00 0.70 4 1.200 0.34 2 1.316 0.99 2 0.024 0.99 2 0.024
#4 1.00 0.88 4 0.488 -1.44 2 4.879 0.99 2 0.013 0.99 2 0.013
#5 1.00 0.93 4 0.285 0.63 2 0.738 1.00 2 0.008 1.00 1 0.005
#6 0.99 0.09 4 3.648 -1.11 2 4.222 -0.19 2 2.381 -0.19 2 2.381

Several combinations of hyper-parameters have been tested for the extractors.
We report in Table 2 the assessments conducted for the underlying black boxes
and for the instances of knowledge extractors providing the best results for each
black box. The coverage of SKE techniques is not shown, since it is equal to 1.00
for all of them. It is clear how GridREx and HEx, being able to describe the
outputs of regression rules as linear functions, outperform CART and GridEx,
only providing constant outputs. HEx provides results very similar to those
obtained with GridREx, nonetheless for one data set it can achieve the same
predictive performance of GridREx with a single regression rule, resulting in
higher knowledge quality. This can be verified by comparing the Qs score of
HEx (0.005) with that of GridREx (0.008).

5 Conclusions

In this work, we introduce HEx to perform SKE from any kind of opaque ML
model designed for classification or regression tasks with continuous input at-
tributes. HEx demonstrates superior compared to existing alternative techniques
in terms of predictive accuracy, completeness and human-interpretability extent.

The HEx algorithm ensures a total input feature space coverage thanks to
its tree-based knowledge extraction. Human readability is achieved via a hierar-
chical input space partitioning aimed at identifying only relevant predictive rules
to be included in a concise output knowledge. Finally, HEx offers sensitive en-
hancements in the predictive performance when applied to regression tasks given
its non-constant predictions based on linear combinations of the input variables.

HEx can be tuned by users via a set of hyper-parameters, that may also be
handled automatically with the existing PEDRO procedure, designed for similar
SKE algorithms. This ensures that HEx provides high-quality knowledge with
minimum user effort.

Our future research will focus on developing more sophisticated and effective
regression rules, to overcome the limitations of constant values and linear combi-
nations. Furthermore, we plan to extend the identification of decision boundaries
from perpendicular to oblique with respect to the data set axes.
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