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Abstract. The automated assessment of symbolic knowledge, derived,
for instance, from extraction procedures, facilitates the autotuning of ma-
chine learning algorithms, obviating inherent biases in subjective human
evaluations. Despite advancements, comprehensive metrics for evaluating
knowledge quality are missing in the literature. To address this gap, our
study introduces ICE, a novel evaluation metric designed to measure the
quality of symbolic knowledge. This metric computes a score by consid-
ering three quality sub-indices, namely, predictive performance, human
readability and completeness, and it can be tailored to suit the specific
requirements of the case at hand by adjusting the weights assigned to
each sub-index. We present here the mathematical formulation of the
ICE score, and show its effectiveness through comparative analyses with
existing quality scores applied to real-world tasks.

Keywords: Explainable artificial intelligence · Symbolic knowledge ex-
traction · AutoML

1 Introduction

In the current landscape of artificial intelligence (AI), symbolic knowledge ex-
traction (SKE) has gained widespread utilisation to address the interpretability
challenges associated with sub-symbolic AI, characterised by efficacy in predic-
tions, but often relying on complex models which pose challenges in terms of
interpretability and explainability [14, 33]. SKE methodologies involve knowl-
edge extraction from “black-box” models [15, 18], aiming to construct surrogate
symbolic representations. These techniques play a crucial role in enhancing the
interpretability and explainability of machine learning (ML) models, enabling
human understanding and trust in decision-making processes.

The literature on SKE techniques emphasises the absence of universally op-
timum solutions [3, 6, 7, 26, 28, 34, 36, 37]. This inherent variability necessitates
the systematic exploration of multiple SKE techniques to select the optimum
approach for a given case. The extracted knowledge quality is linked to factors
such as data distribution, pre-processing strategies, and feature selection tech-
niques. Consequently, a rigorous evaluation of the knowledge is imperative to
compare the efficacy of diverse techniques within the specific context of interest.
Assessing the quality of knowledge derived through SKE involves several indices,
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including accuracy, completeness, and readability [10, 20, 39]. However, manual
evaluation of these indices is time-consuming and subject to subjective biases.
Automation of this evaluation process aligns with an automated machine learn-
ing (AutoML) perspective [13], offering efficiency and objectivity in the selection
of suitable SKE techniques.

While recent efforts have introduced metrics for automated evaluation, these
metrics remain limited in scope, lacking the comprehensive coverage of neces-
sary evaluation criteria and the integration of user feedback and customisation.
Accordingly, in this paper we propose the Index for Complete quality Evalua-
tion (ICE) as a scoring metric designed to comprehensively evaluate knowledge
quality. ICE aims to advance the state of the art by facilitating the automated
evaluation and comparison of symbolic knowledge, providing a complete, objec-
tive and quantitative assessment of the outputs from SKE procedures.

2 Related Works and Background Notions

SKE techniques currently find application in addressing a diverse exhibition
of real-world challenges, particularly in critical domains where interpretabil-
ity and human comprehension are imperative [2, 11]. These methods typically
yield knowledge outputs represented symbolically, facilitating interpretable pre-
dictions. The literature encompasses numerous SKE techniques, necessitating
the execution of various experiments to identify optimum approaches. The com-
parison of different outcomes – i.e., the knowledge extracted – is essential in this
selection process to select the best approach.

Existing literature widely recognises that knowledge quality can be assessed
based on predictive performance, human readability, and completeness [1, 7,
12, 19, 35, 40]. The results of these evaluations depend on both the chosen
SKE algorithm and the user-defined parameters controlling the algorithm’s be-
haviour. Consequently, comparisons can be conducted not only between dis-
tinct extraction procedures, but also between instances of the same extractor
with varying parametrisations. For knowledge to be deemed of high quality, it
must concurrently exhibit superior predictive performance, human readability,
and completeness. Predictive performance concerns the knowledge’s ability to
provide accurate outputs. Readability quantifies the human effort required to
comprehend the rationale behind the predictions. Completeness measures the
proportion of predictions that the knowledge can provide in response to user
queries. The conventional approach to knowledge comparisons typically involves
a manual examination of individual quality indices. However, such a method is
susceptible to human subjectivity (and possible biases) and lacks the capabil-
ity for automated assessments. Moreover, the comparison of a set of knowledge
is straightforward when there exists a candidate knowledge that maximises all
three indices, rendering it the optimum knowledge within the set. Regrettably,
real-world applications often present a fidelity/readability trade-off, wherein a
comparison is made between knowledge exhibiting high predictive performance
but limited readability and knowledge characterised by enhanced human read-
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ability but diminished predictive performance [17]. In such scenarios, selecting
the best knowledge necessitates a thorough consideration of all three quality
indices, free from human bias or material errors. Nonetheless, it remains cru-
cial to offer human users the ability to assign appropriate weights to different
quality indices, enabling adaptation of the comparison to the sensitivity and ob-
jectives of the given task. This is particularly relevant in situations where the
emphasis may vary, such as instances where predictive performance is priori-
tised over readability, as opposed to scenarios where readability is an imperative
consideration.

To the best of our knowledge, to date, only two metrics have been established
for the explicit purpose of evaluating the knowledge quality: FiRe [24] and Qs

[27]. FiRe, while overlooking knowledge completeness in its quality assessment,
allows for the incorporation of a user-defined parameter to adjust the importance
of knowledge readability and predictive performance, respectively. The metric is
as a multiplicative scoring function, considering predictive performance and hu-
man readability as “losses", i.e., predictive loss as predictive error and readabil-
ity loss as knowledge size. Consequently, smaller FiRe scores are indicative of
higher knowledge quality, given that losses are essentially multiplied. Similarly,
Qs is grounded in the multiplication of index losses. Noteworthy distinctions
from FiRe lie in the inclusion of knowledge completeness loss and the exclu-
sion of user-defined capabilities to adjust relative loss weights. No other metrics
evaluating symbolic knowledge quality have been proposed in the literature. Con-
sequently, a comprehensive metric is lacking—one that incorporates predictive
performance, human readability, and completeness indices while allowing for the
customisation of their relative importance in overall score calculation.

Such a metric would serve as a foundational element for enabling an un-
biased, standardised, and concise evaluation of symbolic knowledge quality. It
would be also crucial for AutoML procedures, as it facilitates the automatic
selection of high-quality symbolic knowledge representations, leading to more
precise and efficient ML-based systems. Without such an evaluation metric, Au-
toML algorithms may inadvertently choose suboptimum symbolic knowledge
representations, resulting in subpar model performance and resource wastage.

In this study we introduce ICE as a comprehensive scoring function address-
ing the current literature gap for knowledge quality assessment. The ICE score
enhances the efficacy of previously introduced metrics (FiRe and Qs) by in-
corporating all three indices from the literature to evaluate symbolic knowledge
(predictive performance, readability, and completeness). As a result it provides a
quantitative assessment of knowledge quality, also empowering users to customise
weight parameters, assigning varying importance to the three indices based on
the task and user requirements. Consequently, different symbolic knowledge in-
stances can be easily compared using the ICE metric.

Quality Indices The evaluation of knowledge quality commonly relies on three
primary indices: predictive performance, human-readability extent, and com-
pleteness [10, 39]. Each index lacks a unique definition since it often depends
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on the task at hand. Predictive performance evaluation mirrors approaches ap-
plicable to black-box models or other predictors. The assessment may involve
comparing the ground truth of a data set or the outputs of an opaque model
emulated by the symbolic knowledge. Task-dependent evaluations prevail, with
accuracy and F1 scores being standard for classification tasks, while mean abso-
lute/squared error (MAE/MSE) and the R2 score are commonplace for regres-
sion tasks. Readability is often associated with knowledge size [8]. For instance,
an SKE algorithm generating a list of n rules may be deemed more human-
readable than another procedure presenting a list or tree with 2n rules or leaves.
While readability information can extend to the complexity of individual knowl-
edge items, quantitative and formal assessments of this complexity are currently
unavailable. For example, comparing a tree leaf’s readability describing an M-of-
N logic rule to a decision table entry associated with a fuzzy rule lacks established
techniques [24]. Consequently, knowledge size is generally considered sufficient
to express readability due to its straightforward interpretation. Completeness is
estimated as the percentage of the input feature space covered by the knowledge,
representing the subspace where predictions can be made. In instances where this
measurement proves impractical, such as data sets with a multitude of input fea-
tures, completeness estimation can be achieved by querying the knowledge with
a set of instances and calculating the percentage of provided responses.

3 The ICE Score

The ICE (Index for Complete quality Evaluation) score provides an evaluation
encompassing predictive performance, human readability and completeness of
the analysed knowledge. To achieve this goal the first two indices are squashed
in the (0, 1) open interval with a generalised sigmoid function (parametrised by
the user) and then they are multiplied together and by the completeness index.
The user-defined parameters used inside the generalised sigmoid functions enable
the ICE score to assign a customised relative relevance to predictive performance
and human readability. No parameters are required for the completeness impor-
tance since this latter is assumed equal to 1 by default to avoid an unnecessary
complex score formulation. The completeness does not need to be normalised in
the specified interval, because it is naturally expressed as a percentage, and thus
it always lies within the [0, 1] closed interval.

ICE is a multiplicative metric assuming that good quality knowledge is as-
sociated with high values of all the three underlying indices and, conversely, bad
quality is associated with small values of at least one index. Therefore, the ICE
score can assume values in the [0, 1) half-open interval. Ideally, good knowledge
should have ICE score as close as possible to 1. The ICE score is defined as the
following continuous and differentiable function:

ICE : (R≤1 × R>0 × [0, 1]× R>0 × R>0) 7→ [0, 1), (1)
ICE(p, r, c, φ, ρ) = P (p, φ) ·R(r, ρ) · c, (2)
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where p, r and c are the raw knowledge predictive performance, size and com-
pleteness measurements, respectively, φ is the relative importance assigned to
the raw predictive performance, and ρ is the one assigned to the knowledge
size.P (·) and R(·) are the continuous and differentiable functions expressing the
knowledge accuracy and readability, respectively, defined as follows:

P : (R≤1 × R>0) 7→ (0, 1), (3)

P (p, φ) =
(
1 + e5(φ(1−p)−1)

)−1

, (4)

R : (R>0 × R>0) 7→ (0, 1), (5)

R(r, ρ) =
(
1 + e0.3ρr−5

)−1
. (6)

The accuracy function P (p, φ) used for the ICE calculation is an ad-hoc func-
tion representing the knowledge raw predictive performance p squashed in (0, 1)
and weighted with respect to the user-defined importance parameter φ. Anal-
ogously, the readability function R(r, ρ) squashes in the same interval the raw
human-readability extent (i.e., the knowledge size) r and weights it according to
the user-defined importance parameter ρ. Since the completeness importance is
always considered equal to 1 in the ICE score calculation, users can act on the
φ and ρ parameters to decide the relative importance of knowledge predictive
performance and size with respect to each other and the completeness by select-
ing values smaller or larger than 1. If both φ and ρ are equal to 1, then the ICE
score equally weights the three indices. The ICE score trend for different values
of its parameters is reported in Figure 1.

We point out that the fixed values used to parametrise the exponentials
within the P (·) and R(·) functions have been carefully tuned to obtain “well-
behaved” sigmoid functions suitable to be customised by users only by providing
a single additional importance parameter. In this context, a well-behaved sig-
moid (i) tends to 1 when representing desirable knowledge properties (e.g., high
predictive performance or human readability), (ii) tends to 0 when denoting
poor knowledge quality, and (iii) exhibits a growth rate tunable via a single
user-defined parameter, representing the importance of the sigmoid function in
the overall ICE score calculation. The fixed values of Equations (4) and (6) (e.g.
0.3, 5) were chosen after a thorough study of the aforementioned properties and
utilizing optimisation tools that provide sigmoid curve fitting.

In the following, we analyse the ICE function domain, the properties of the
accuracy and readability functions and those resulting in the ICE score.

3.1 ICE Function Domain

The ICE scoring function is defined in the domain reported in Equation (1),
given the following assumptions: (i) knowledge raw predictive performance (p) as-
sessed via task-dependent scores equal to 1 in the best case, may have no low-
er-bound in the worst case; (ii) knowledge size (r) an integer number greater or
equal to 1 (knowledge contains at least one item). To enhance score flexibility the
corresponding considered range has been extended to all positive real numbers;
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Fig. 1: ICE score for different values of knowledge predictive performance p (x-
axis), size r (y-axis) and completeness c (z-axis), predictive performance im-
portance φ (rows) and size importance ρ (columns). Different colours represent
different ICE score values (top colourbar).

(iii) knowledge coverage (c) expressed as a percentage and mapped in the [0, 1]
interval; (iv) predictive performance importance (φ) a positive real number by
design; (v) knowledge size importance (ρ) a positive real number by design.

3.2 ICE Accuracy Function

ICE adopts the P (·) accuracy function shown in Equations (3) and (4) and
depicted in the left panel of Figure 2 to apply the user-defined weight φ to
the raw predictive performance p measured for the knowledge. The left part of
Figure 3 reports the accuracy for different fixed values of the φ weight and the
function’s first and second partial derivatives with respect to p. The function is
bounded in (0, 1) for any possible value of p and φ. Indeed, from Equation (4):

lim
p→−∞

P (p, φ) = 0, ∀φ > 0, (7)

lim
p→1

P (p, φ) = 1, ∀φ > 0, (8)

lim
φ→∞

P (p, φ) = 0, ∀p < 1, (9)

lim
φ→0

P (p, φ) = 1, ∀p < 1. (10)



ICE: An Evaluation Metric to Assess Symbolic Knowledge Quality 7

−0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0

Predictive performance p

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

P
re

di
ct

iv
e

pe
rf.

re
le

va
nc

e
ϕ

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P (p, ϕ)
0 5 10 15 20 25

Knowledge size r

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

K
no

w
le

dg
e

si
ze

re
le

va
nc

e
ρ

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R(r, ρ)

Fig. 2: ICE accuracy and readability function trends in their domains. Functions’
input parameters are reported in the axes, the corresponding value is represented
by the colour (small values are associated with dark colours).

The accuracy function is monotonically increasing with respect to p and
decreasing with respect to φ, indeed:

0 <
∂P

∂p
=

5 φ e5(φ(1−p)−1)(
1 + e5(φ(1−p)−1)

)2 , (11)

0 >
∂P

∂φ
= −5 (1− p) e5(φ(1−p)−1)(

1 + e5(φ(1−p)−1)
)2 , (12)

p1 < p2 ⇐⇒ P (p1, φ) < P (p2, φ), (13)
φ1 < φ2 ⇐⇒ P (p, φ1) > P (p, φ2). (14)

Equations from (11) to (14) hold ∀p, p1, p2 ∈ R≤1, ∀φ,φ1, φ2 ∈ R>0, with the
only exception of Equation (12) strictly requiring p < 1.

Another interesting property of the accuracy function is the flex point ob-
served for a fixed value of φ. The flex point analysis gives an insight about the
relationship between p and φ within the accuracy function. Equating to 0 the
second partial derivative of P (·) with respect to p we obtain:

∂2P

∂p2
= 25 φ2 e5(φ(1−p)−1) − e10(φ(1−p)−1)(

1 + e5(φ(1−p)−1)
)3 = 0, p = 1− 1

φ
. (15)

It is possible to obtain the same result through the second partial derivative for
φ. Anyway, given the flex point properties of generic sigmoid functions ranging
in (0, 1), P (p, φ) = 0.5 ∀p, φ | p = 1− 1

φ .

3.3 ICE Readability Function

ICE adopts the R(·) readability function reported in Equations (5) and (6) to
apply the user-defined weight ρ to the measured knowledge size r. The function
is shown in the right panels of Figures 2 and 3. In Figure 3 the readability
score obtained for a set of ρ weight values is reported. Similarly to the accuracy,
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Fig. 3: ICE accuracy and readability functions with respect to predictive per-
formance p, knowledge size r, φ and ρ (top panels). First and second partial
derivatives (middle and bottom panels, respectively) for p and r.

also the readability function is bounded in (0, 1) for any possible value of its
parameters, as ensured by Equation (6), indeed:

lim
r→∞

R(r, ρ) = 0, ∀ρ > 0, (16)

lim
r→0

R(r, ρ) = 1, ∀ρ > 0, (17)

lim
ρ→∞

R(r, ρ) = 0, ∀r > 0, (18)

lim
ρ→0

R(r, ρ) = 1, ∀r > 0. (19)

The readability function is monotonically decreasing with respect to r and ρ:

0 >
∂R

∂r
= − 0.3 ρ e0.3ρr−5

(1 + e0.3ρr−5)
2 , (20)

0 >
∂R

∂ρ
= − 0.3 r e0.3ρr−5

(1 + e0.3ρr−5)
2 , (21)

r1 < r2 ⇐⇒ R(r1, ρ) > R(r2, ρ), (22)
ρ1 < ρ2 ⇐⇒ R(r, ρ1) > R(r, ρ2). (23)

Equations from (20) to (23) hold ∀r, r1, r2, ρ, ρ1, ρ2 ∈ R>0.
Also in this case it is interesting to study the flex point observed for a fixed

value of ρ. By equating to 0 the second partial derivative of R(·) with respect to
r we obtain that R(r, ρ) = 0.5 ∀r, ρ | r = 5

0.3ρ .

3.4 ICE Function Properties

The overall ICE score is calculated by multiplying the accuracy function, the
readability function and the completeness measurement. Given the properties
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of the two functions and the fact that completeness may be considered as a
multiplicative constant, several properties may be demonstrated for the ICE
score. Information on the ICE function range may be derived:

0 ≤ ICE(p, r, c, φ, ρ) < 1, ∀ p, r, c, φ, ρ. (24)

From Equations (7) to (10) and (16) to (19) the ICE asymptotic behaviour
may be inferred. In particular, the ICE score tends to 0 if the knowledge pre-
dictive performance tends to −∞, or if at least one amongst knowledge size,
predictive performance importance or size importance tends to ∞. Formally,

lim
P (p,φ)→0

ICE(p, r, c, φ, ρ) = 0, ∀r, ρ, c, (25)

lim
R(r,ρ)→0

ICE(p, r, c, φ, ρ) = 0, ∀p, φ, c. (26)

Furthermore, it is trivial to demonstrate that

ICE(p, r, c, φ, ρ) = 0 ⇐⇒ c = 0. (27)

The ICE score tends to 1 if (i) the knowledge predictive performance also
tends to 1 or the corresponding user-defined relevance tends to 0 and, at the
same time, (ii) the knowledge size or its importance tends to 0, and (iii) the
knowledge completeness is equal to 1. Formally,

ICE(p, r, c, φ, ρ) ≃ 1 ⇐⇒ P (p, φ) ≃ 1, R(r, ρ) ≃ 1, c = 1. (28)

ICE score values near 0 and 1 descend from the elementary properties of
multiplication. Indeed at least one amongst accuracy, readability or completeness
terms near 0 is sufficient to drag the ICE score towards 0. Conversely, all of
them need to be near 1 to enable an ICE score close to 1. Monotonicity of the
ICE function may be trivially deduced for individual projections of the involved
variables, except when c = 0 (in this case the ICE score is always 0).

3.5 Flexibility of the ICE Score

ICE has been designed to satisfy flexibility requirements for the fidelity/read-
ability trade-off, that may not be sufficiently handled by the existing Qs and
FiRe scores, despite their dedicated customisation parameters. For instance, let
us consider the comparison of a knowledge described by 4 rules covering the
whole input space having accuracy score = 0.95 and another exhaustive knowl-
edge with only one rule having accuracy = 0.75. Both alternatives are equivalent
if considering completeness, whereas the former maximises the predictive per-
formance and the latter maximises the human-readability extent. Depending on
the specific application (e.g., if human readability is more or less important than
the predictive performance), end-users may prefer one knowledge or the other.
A flexible metric to evaluate knowledge quality should allow users to tune the
importance of the underlying quality indices to reflect this necessity. However,
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the knowledge with 4 rules is the best according to the Qs score, without any
provision for human intervention to alter the rating based on fidelity/readability
trade-off preferences. Furthermore, it is trivial to demonstrate analytically that
with the FiRe metric it is not possible to find a value for the trade-off param-
eter such that the single-ruled knowledge is considered better than the other.
Conversely, the ICE importance parameters for the predictive performance and
readability may be set equal to 0.5 and 2, respectively, to privilege the knowledge
with fewer rules, or equal to 2 and 0.5, respectively, to privilege the one with
highest predictive performance. ICE is thus more flexible than FiRe, which is
not capable of satisfying all possible users’ needs.

4 Experiments

The effectiveness of the ICE scoring function in evaluating symbolic knowledge
quality has been assessed through the comparison of the outputs provided by
different SKE algorithms based on clustering, trees and/or hypercubes [21, 29,
31]: ExACT [22], CREAM [23], Iter [12], GridEx [32] and CART [4]. We
relied on the ML models and SKE techniques implemented within the scikit-learn
and PSyKE3 Python libraries [5, 16, 25, 30]. The ICE score is thus applied to
give a quantitative assessment of the outputs provided by this pool of extractors.
Other analogous metrics (i.e., the FiRe and Qs scores) have also been applied
to the same outputs as benchmarks.

Experiments are carried out on the Wine [9] and Wisconsin breast cancer
(WBC) [38] classification data sets. SKE algorithms have been applied to un-
bounded decision trees (DTs) previously trained on them. For each combination
of data set and extraction technique, the corresponding output symbolic knowl-
edge has been evaluated based on its raw predictive performance via the F1 score,
its size and its completeness. Given that Iter and GridEx provide knowledge
in the form of a logic rule list, the knowledge size corresponds to the number of
rules. ExACT, CREAM and CART, conversely, provide tree-structured sym-
bolic knowledge and therefore the size corresponds to the number of leaf nodes.
Completeness has been calculated as the percentage of the input feature space
volume covered by the extracted rules with respect to the whole volume. Tree-
based knowledge has always completeness = 1.

Since the Qs and FiRe metrics require knowledge quality indices to be ex-
pressed as losses, we calculated the predictive loss as 1 − F1, the readability
loss as the knowledge size and the completeness loss as 2 − completeness, as
suggested in [27]. We recall here that completeness ranges in [0, 1] and therefore
a loss calculated as 1 − completeness is not suitable for multiplicative quality
evaluations, as the case of Qs, since exhaustive completeness (i.e., a loss equal to
0) would zero the score regardless of the predictive and readability loss values.

Qs does not require user-defined parameters, so it is applied to the loss mea-
surements without customisations. For the fidelity-readability trade-off param-
eter (ψ) required by the FiRe score, we selected ψ = 1 and ψ = 3 to test the
3 https://github.com/psykei/psyke-python

https://github.com/psykei/psyke-python
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Fig. 4: Experiment results.

Table 1: Experimental results (EX = ExACT, CR = CREAM, G = GridEx).
Data set Wine WBC
Quality metric EX CR Iter G CART EX CR Iter G CART

F1 score 0.80 0.95 0.92 0.73 0.89 0.82 0.94 0.89 0.92 0.94
Knowledge size 3 4 9 5 3 3 2 5 3 3
Completeness 1.00 1.00 0.75 1.00 1.00 1.00 1.00 0.76 1.00 1.00

Qs 0.608 0.203 0.926 1.340 0.338 0.536 0.118 0.672 0.246 0.178
FiRe, ψ = 1 0.643 0.217 0.829 1.452 0.357 0.566 0.122 0.590 0.260 0.188
FiRe, ψ = 3 0.214 0.109 0.276 0.581 0.119 0.189 0.061 0.236 0.087 0.063
ICE, φ = 1, ρ = 1 0.966 0.970 0.678 0.946 0.972 0.968 0.979 0.733 0.974 0.975
ICE, φ = 3, ρ = 1 0.862 0.964 0.669 0.706 0.949 0.896 0.972 0.717 0.962 0.968
ICE, φ = 1, ρ = 3 0.892 0.795 0.032 0.607 0.898 0.894 0.952 0.470 0.900 0.901

metric under different conditions (equal importance for predictive and readabil-
ity losses and higher importance for the predictive loss since high values of ψ
tend to neglect the impact of the readability loss). Finally, for the ICE score we
tested three different cases: φ = 1 and ρ = 1; φ = 3 and ρ = 1; φ = 1 and ρ = 3.
Results of the experiments are reported in Figure 4, i.e., a comparison of the
data sets’ ground truth with the predictions of DTs and SKE algorithms in the
top panels and the corresponding knowledge quality evaluations in the bottom
ones. Star- and cross-hatched bars highlight the best and worst score values,
respectively. We recall that differently from ICE, knowledge evaluated via the
Qs and FiRe metrics has good quality if associated with small scores. Table 1
reports for each case study the quality indices for all the adopted SKE extrac-
tors and the corresponding Qs, FiRe and ICE scores calculated upon these
indices. Corresponding index losses are not reported since they can be trivially
obtained as described above. For each index and metric, the best(worst) values
are highlighted in bold(italic) font.
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Case Studies In the Wine Data Set case study there is no candidate knowledge
having all the best quality indices at the same time: CREAM has the best F1

score and complete coverage, but it provides one rule more than CART and
ExACT. These two alternatives have comparable completeness but smaller F1

scores, especially ExACT. However, this evaluation is somehow limiting because
there may be situations where higher readability (fewer rules) is preferred over
accuracy. It is worth noticing that in these scores readability (as per literature)
only considers the size of the knowledge, but it could include more advanced
evaluations based on its human interpretability. The FiRe and Qs scores are
unanimous in declaring the symbolic knowledge extracted via CREAM the one
having the best quality. ICE accepts human customisation and assigns the high-
est quality to CART when setting φ < ρ (knowledge readability has a pre-
dominant role with respect to predictive performance). Conversely, when φ > ρ
the best SKE algorithm is CREAM since its output knowledge has the high-
est predictive performance, which in this case is the prevalent term in the ICE
calculation. Finally, with φ = ρ both terms are equally weighted, resulting in a
very slight difference in the evaluation of CART and CREAM.

For the WBC data set there is an SKE technique minimising knowledge
size and maximising its completeness and F1 score at the same time. Thus,
CREAM is considered the best technique according to all quality metrics. Iter
is clearly the algorithm providing the worst knowledge, given that its individual
quality indices are all suboptimum. Of particular interest in this case study is the
comparison between ExACT and GridEx. They produce knowledge having the
same completeness and size, however, GridEx has a higher F1 score. This latter
is obviously considered better than ExACT according to all quality metrics,
however, the difference is slight if the quality is evaluated through ICE with
φ ≤ ρ, since it assigns more relevance to the knowledge size than to the predictive
performance. On the contrary, the difference in quality is far more evident when
assessed via ICE with φ > ρ, assigning larger weights to the F1 score impact.

5 Conclusions

ICE is a new metric evaluating the quality of symbolic knowledge according
to a set of relevant indices, such as predictive performance, human-readability
extent, and completeness. It proves to be effective in carrying out automated
assessments and comparisons, also enabling human tuning of the weights to be
assigned to individual quality indices. For this reason, ICE results are more flex-
ible than existing alternatives. We believe that complete scoring functions for
symbolic knowledge as ICE may be effective in developing algorithmic solutions
for automated tuning of parameters required by SKE procedures, therefore avoid-
ing time-consuming manual selection performed by humans, possibly leading to
suboptimum results. Future works will be devoted to a deeper investigation of in-
terpretability including readability information about the individual knowledge
items. Furthermore, we plan to study a more sound approach to avoid subjec-
tivity in the ICE score’s weight adjustment, currently still lacking unambiguity.
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