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Abstract. The performance of automatic speech recognition (ASR) sys-
tems in acoustically challenging environments is crucial for the effective-
ness of various voice-controlled applications. This study presents an ex-
tensive experimental evaluation of the robustness of different ASR mod-
els against a range of acoustic disturbances, including white noise, rever-
beration, time stretch, and pitch shift. By comparing the performance
of these models in English, Italian, and German, this research provides
a cross-linguistic perspective. The findings reveal a significant decline in
performance across all models when subjected to these audio distortions,
highlighting the varying degrees of resilience across different languages.
By incorporating multiple languages, this study offers valuable insights
into the unique challenges and potential opportunities for enhancing ASR
technologies, addressing both well-researched and less-explored linguis-
tic domains. Our comparative study highlights that although ASRs are
reaching near-human accuracy in ideal acoustic conditions, ASR perfor-
mance under the whole range of distortions is still well below human
performance
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1 Introduction

Recent advancements in automatic speech recognition (ASR) have introduced
models like Whisper [28], Conformer [13], and QuartzNet [19]. These develop-
ments have significantly enhanced ASR efficiency and speed, which is essential
for a wide range of applications.

However, the accuracy of ASR models, especially under acoustically chal-
lenging conditions, remains crucial. Prior studies [21,14,5] have highlighted the
importance of improving ASR systems’ resilience to noise and other acoustic dis-
tortions. Improving ASR robustness to noise is a direct approach to enhancing
performance, particularly under conditions with significant noise.

This research evaluates the robustness of ASR models, including the Whisper
family, QuartzNet, Conformer, and Fast Conformer, under various audio trans-
formations — such as white noise, reverberation, time stretching, and pitch
shifting — chosen to replicate common auditory challenges encountered in real-
life and online communication scenarios. These transformations are selected to
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mimic common auditory challenges encountered in real life and online commu-
nication.

Our study seeks to contribute to the ASR field by systematically investigat-
ing various ASR models under diverse acoustic conditions and across multiple
languages. The findings are intended to inform future developments in speech
recognition technology, optimizing its application in varied real-world scenarios
and expanding its utility across different linguistic domains.

2 Related Work

Advances in automatic speech recognition (ASR) technology, especially with
models like Whisper [28], Conformer [13], and QuartzNet [19], have been signif-
icant.

The native multilingual capabilities of models like Whisper [28], compared to
fine-tuning methods [16], represent different strategies for adapting ASR tech-
nologies across languages and conditions, enhancing their generalizability and
utility.

While the Whisper model shows resilience in basic noise environments [28,22],
its performance under extensive acoustic variations remains less explored. Con-
former’s integration into denoising pipelines [7,20] showcases improvements in
recognition amidst noise. Developing noisy datasets [6] and noise augmenta-
tion techniques [1] has been essential, though their applicability to Whisper and
QuartzNet requires more exploration.

In [18], it is shown that ASR models degrade significantly at high noise levels
in Italian, even when human listeners can transcribe accurately. In [17], Whis-
per models struggle with audio transformations and chunk length variations,
particularly for German. However, the study lacks a multilingual comparison,
highlighting the need for broader cross-linguistic analysis.

Research on noise removal [32,21] and speech dereverberation [30,31] offers
solutions to mitigate auditory distortions, which are common challenges in ASR
applications. These studies lay a foundation for enhancing ASR robustness to
noise and reverberation.

QuartzNet, when fine-tuned with noise augmentations, shows improvements
in handling noisy samples while maintaining performance on clean data [3],
demonstrating the potential of targeted noise augmentation.

Pitch manipulation research aims to reduce performance gaps between male
and female voices [9], a critical area for ensuring ASR systems handle cross-
speaker variation effectively.

In summary, ASR has progressed significantly with models like Whisper,
Conformer, and QuartzNet, but further exploration is needed in noise han-
dling, unconventional transformations, and multilingual support. These areas
offer promising paths for enhancing ASR robustness and versatility.

Our research evaluates the robustness of Whisper, QuartzNet, Conformer,
and Fast Conformer models under diverse acoustic disturbances in English, Ital-
ian, and German languages.
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3 Methodology

This study assesses Whisper, QuartzNet, Conformer, and Fast Conformer ASR
models’ robustness to audio disturbances, focusing on English, Italian, and Ger-
man languages. We conduct transformations to mimic challenges encountered
in online communications and real-world environments, evaluating their perfor-
mance and identifying areas for enhancement.

3.1 Models

The Whisper, QuartzNet, Conformer, and Fast Conformer models were selected
for their architectural characteristics and their different approaches to handling
multilingual data and noise.

Whisper Models We utilized the Whisper base, medium, and large-v3 models
[28], leveraging their multilingual capabilities by specifying the target language
(English, German, or Italian) during inference. These models are designed to
support multiple languages, allowing for optional language selection at inference.

QuartzNet 15x5 QuartzNet [19] 15x5, featuring a deep 79-layer architecture and
18.9 million parameters, was initially pretrained on English datasets such as
LibriSpeech [24], Fisher Corpus [4], Switchboard-1 [10], WSJ-0, and WSJ-1 [25].
It was subsequently fine-tuned for various languages using the Common Voice
[2] dataset.

Conformer CTC Large The Conformer CTC Large model, which uses around
120 million parameters, employs the Connectionist Temporal Classification (CTC)
loss function [12]. It was trained on datasets such as Common Voice [2], Multilin-
gual LibriSpeech [27], and VoxPopuli [33], and utilizes a SentencePiece tokenizer
[11].

Conformer-Transducer Large This model utilizes the Recurrent Neural Network
Transducer (RNNT) loss and decoder [34] for automatic speech recognition. It
was trained on the same datasets as the Conformer CTC Large.

FastConformer Hybrid Transducer-CTC Large The FastConformer [29] Hybrid
Transducer-CTC model combines the strengths of both CTC and Transducer
models. It was trained on the same speech data as the Conformer models. The
architecture of this model is optimized with 8x depthwise-separable convolutional
downsampling.

Table 1 provides a summary of the model architectures and parameter counts
for each ASR model evaluated in this study.
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Model Architecture Parameters (millions)

Whisper Base Transformer 74
Whisper Medium Transformer 769
Whisper Large-v3 Transformer 1550
QuartzNet 15x5 CNN 18.9
Conformer-CTC Large Conformer 120
Conformer-Transducer Large Conformer 120
FastConformer Hybrid Conformer 114

Table 1. Model architectures and parameter counts

3.2 Dataset

To evaluate the efficiency of the ASR models in environments augmented with
audio disturbances, we utilized the test subsets of the Common Voice 13.0
dataset [2] for English, Italian, and German. The dataset consists of approx-
imately 13,000 utterances per language, providing a balanced representation of
various accents and speech contexts encountered in real-world scenarios.

3.3 Evaluation Metrics

To assess the performance of speech recognition systems in our study, we employ
the Word Error Rate (WER) metric. The WER is calculated as follows:

WER =
S +D + I

N
, (1)

where S, D, and I denote the numbers of substitutions, deletions, and insertions
needed to match the system’s transcription to the reference text. N represents
the total count of words in the reference text.

This measure serves as an indicator of transcription accuracy, with lower
WER values reflecting better performance. Typically, a WER below 0.1 is con-
sidered excellent, 0.1-0.2 is acceptable but may indicate potential issues, and
above 0.2 denotes significant transcription errors, making the ASR output diffi-
cult to understand.

For text normalization, punctuation and other non-alphanumeric symbols
were removed, and all text was converted to lowercase.

3.4 Audio Transformations

To evaluate the performance of ASR models under realistic acoustic conditions,
specific audio transformations were applied. These transformations were chosen
to replicate common auditory challenges.

The white noise transformation adds uniform noise across various frequen-
cies, simulating background noise found in crowded places, urban settings, and
telecommunications or online communications due to signal interference or com-
pression artifacts. Time stretch transformation changes the duration of an audio
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signal without altering its pitch, mimicking scenarios where speech speed varies,
such as in spontaneous conversations. Pitch shift transformation changes the
pitch of an audio signal, representing different speaker fundamental frequency,
singing voices, and speech patterns of individuals with certain medical condi-
tions, testing the model’s adaptability to varying vocal pitches. Reverberation
adds echo effects to simulate environments like large halls, reflective rooms, and
phone calls, testing the model’s ability to handle echoes.

The transformations are defined as follows, inspired by real-world auditory
conditions to evaluate model robustness:

– White Noise: A uniform noise signal added across various frequencies to
simulate background noise in urban settings or online communications, ex-
pressed as

n(t) = α · rand(t), (2)

where α represents the amplitude.
– Time Stretch: Modifies the duration of an audio signal without altering its

pitch, representing variations in speech speed in conversations, described by

y(t) = x(a · t), (3)

where a is the stretch factor.
– Pitch Shift: Alters the pitch using Fourier Transform techniques, reflecting

different vocal pitches, given by

y(t) = F−1{F{x(t)} · ej2π∆ft}, (4)

with ∆f indicating the frequency shift.
– Reverberation: Simulates echo effects as in large rooms or phone calls,

represented as
y(t) = x(t) + α · x(t−∆t), (5)

where α is the decay rate and ∆t is the delay time.

4 Results

We analyzed Whisper, QuartzNet, and Conformer models under acoustic dis-
turbances like white noise, time stretch, pitch shift and reverberation to explore
their robustness in the English, Italian and German context.
The results in Table 2 show that the Whisper Large model and Conformer
variants consistently outperform other models, while QuartzNet’s lower accuracy
reflects its simpler architecture. The Whisper Base model, despite being the
smallest in the advanced Whisper series, has the highest WER, highlighting its
limitations in achieving optimal accuracy as a compact transformer model. This
result underscores the trade-off between model complexity and performance,
particularly in noise-free environments. Across different languages, this tendency
persists. While the Whisper Base model excels in English, the more advanced
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Model / Language English Italian German

Whisper Base 0.26 0.37 0.30
Whisper Medium 0.13 0.10 0.09
Whisper Large-v3 0.11 0.06 0.06
QuartzNet 0.22 0.17 0.14
Conformer-CTC Large 0.10 0.07 0.07
Conformer-Transducer Large 0.08 0.05 0.06
FastConformer-Hybrid CTC/Transducer 0.10 0.06 0.05

Table 2. WER for ASR Models in Noise-Free Scenario

Whisper Large-v3 model performs better in Italian and German. The superior
performance of QuartzNet and Conformer models can be attributed to the use
of the Common Voice dataset for tuning non-English languages, enabling these
models to better adapt to the distribution in the test set.

4.1 English Language Experiments

We performed a set of experiments on all previously listed models for the English
language.

The almost linear degradation in quality is evident for nearly all models, as
shown in Fig. 1. The Whisper Base model appears to be the least robust, with
its WER increasing more rapidly than that of other models. Among the other
models, QuartzNet demonstrates poorer performance compared to the rest. At
a noise level of 0.03, all models experience a marked reduction in quality, high-
lighting a clear deviation from the human ability to comprehend and interpret
audio content in similar conditions [26].

Although pitch changes do not greatly affect human comprehension of au-
dio, these modifications result in a noticeable and fairly consistent decline in
ASR model performance across all tested levels. Of the models evaluated, the
Conformer Transducer Large shows the greatest resilience to pitch alterations,
as indicated in Fig. 2. It is important to note that the specific level of pitch
variation has minimal impact on the model. It seems that merely shifting the
signal out of the training set distribution is sufficient to significantly degrade
performance.

At altered time stretch levels, there is a universal decline in performance
across all models, as shown in Fig. 3. The x-axis value of 1.0 represents no trans-
formation, with values to the left indicating slowed down audio and values to the
right indicating sped up audio. However, the Whisper models, particularly the
smaller variants, experience a more pronounced performance drop and are prone
to generating repetitive phrases in their outputs. This phenomenon, known as
”hallucination” is widely observed in sequence generation models and affects
both ASR [8] and broader language generation [15], leading to significantly in-
flated WER. Notably, even at stretch rates of 0.9 or 1.1, where humans find the
audio completely intelligible [23], there is still a noticeable decline in recognition
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Fig. 1. WER comparison for different models under white noise for English language

Fig. 2. WER comparison for different models under pitch shift for English language
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accuracy for these models. Interestingly, the Conformer Transducer Large per-
forms better with sped-up audio, while Whisper Large-v3 handles slowed-down
audio more effectively.

Fig. 3. WER comparison for different models under time stretch for English language

Fig. 4 illustrates the superior performance the Whisper Large-v3 model, in
handling reverberated audio. In contrast, the Whisper Base model struggles
significantly with these transformations. Notably, across all tested reverberation
times, we observe a nearly uniform degradation in model performance, indicating
that these ASR systems are sensitive to the presence of reverberation rather than
its intensity.

4.2 Multilingual Experiments

Experiments were conducted for English, Italian, and German languages. To
maintain concise and clear visual representations, we present the results only for
the Whisper Large-v3, Whisper Base, and Conformer Transducer Large models.
For each language, a distinct color is used, and for each model, a unique line
style is applied. Specifically, the Whisper Large-v3 model is represented with a
solid line, the Conformer Transducer Large with dashed lines, and the Whisper
Base with dotted lines.

The Conformer model demonstrates superior robustness in Italian and Ger-
man, while the Whisper Large-v3 model performs better in English. As shown
in Fig. 5, both the models achieve commendable results, with their performance
in Italian and German surpassing that in English. This may be attributed to
the phonetic properties of these languages. The Whisper Base model, however,
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Fig. 4. WER comparison for different models under reverberation for English language

exhibits significantly lower quality in Italian compared to other languages. Con-
versely, for English, the Whisper Base model shows relatively good performance,
whereas the Whisper Large-v3 and Conformer models have higher WER.

The same tendency persists for pitch shift transformations. As shown in
Fig. 6, the Whisper Large-v3 model performs almost equally well for both
German and Italian languages. The Conformer model, however, demonstrates
slightly better performance in the Italian language.

For time stretch transformations, the Whisper Large-v3 and Conformer mod-
els perform at a similar quality overall. However, the Conformer model performs
better for stretch factors greater than 1.0, while the Whisper Large-v3 model
performs better for stretch factors less than 1.0, as shown in Fig. 7.

It can be observed that the Whisper Large-v3 model is the most robust to
reverberation across all languages. Although the WER remains relatively high,
it is significantly lower compared to other models, as illustrated in Fig. 4.

The performance differences across languages can be attributed to linguistic
features. Italian and German have more consistent phoneme-to-grapheme map-
pings than English, possibly explaining the better model performance. Addi-
tionally, German compound words and Italian vowel-rich phonetics pose unique
challenges. Future work could explore these nuances further to optimize ASR
model training and fine-tuning for specific languages.

Overall, the Whisper Large-v3 model is more robust to transformations such
as reverberation and time stretch with a stretch factor less than 1.0 (slowing
down). In contrast, the Conformer model performs better under conditions such
as white noise. This robustness can be attributed to the specific fine-tuning
processes applied to these models.
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Fig. 5. WER comparison for different models and languages under white noise

Fig. 6. WER comparison for different models and languages under pitch shift
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Fig. 7. WER comparison for different models and languages under time stretch

Fig. 8. WER comparison for different models under reverberation
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5 Conclusion

This study evaluates Whisper, QuartzNet, and Conformer ASR models against
acoustic disturbances (white noise, reverberation, time stretch, pitch shift) across
English, Italian, and German. The findings highlight each model’s unique re-
sponse to these challenges, with larger models like Whisper Large-v3 and Con-
former generally performing better, though they still struggle with certain trans-
formations. Whisper Base, with its limited parameters, exhibits significant ro-
bustness issues and a tendency to hallucinate.

Interestingly, despite more training data for English, Italian and German of-
ten show better ASR performance, suggesting language-specific factors in ASR
accuracy. Whisper’s multilingual capability is notable, but it sometimes under-
performs compared to specialized Conformer models, indicating a trade-off be-
tween versatility and accuracy.

Different audio transformations uniquely affect ASR model performance. For
example, reverberation shows a uniform degradation across models, suggesting
a need for specialized training to handle such transformations better.

While ASR achieves near-human accuracy under ideal conditions, its per-
formance under distortions is still below human levels. Noises that humans can
easily compensate for result in high WER for ASR systems. For instance, white
noise often produces high WER despite humans understanding the speech rela-
tively well. Similarly, time stretch transformations might not significantly hinder
human comprehension but can drastically increase WER for ASR models.

Future research should explore advanced noise augmentation techniques, un-
derstand linguistic nuances contributing to performance differences, and ensure
balanced language representation in training data. Additionally, the acoustic
transformations used in this study could provide insights for improving ASR
systems for pathological speech, which often exhibits irregular pitch, breathi-
ness, and other distortions. Addressing these aspects will make ASR systems
more inclusive and capable of serving users with a wide range of speech charac-
teristics. Furthermore, investigating the impact of mixed noise scenarios—where
multiple types of acoustic disturbances, such as background noise and reverber-
ation, occur simultaneously — can offer a more comprehensive understanding of
ASR robustness in complex real-world environments, guiding the development
of more resilient systems.

It is also essential to investigate the discrepancies between human and ma-
chine intelligibility of distorted speech, aiming to develop ASR systems that
align more closely with human auditory perception. These steps will help de-
velop ASR technologies that are robust, reliable, and effective across diverse
linguistic contexts.
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