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Abstract. Deep Graph Networks (DGNs), i.e. neural networks able to
process graphs directly, feature an iterative message passing (MP) step
that implements the node embeddings computation. However, the induc-
tive and architectural biases of different DGNs in relation to the type
and number of MP iterations are yet to be unveiled. Here, we investi-
gate this important topic using eXplainable Artificial Intelligence (XAI)
techniques for graphs. Specifically, we use the XAI metric of plausibil-
ity to detect explanatory patterns and to relate this information to the
biases exploited by the underlying DGN to correctly learn graph classifi-
cation tasks. We use this method to gather evidence on the rich diversity
of DGN biases in relation to the type and number of iterations of MP
when applied to XAl benchmarks. In addition, we show that when the
MP conditions are fixed, the learned explanatory pattern may change
based on the norm of the learned weights, signifying that the training
procedure, in particular cases, influences the generalization dynamics.
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1 Introduction

The increasing use of graph structures to model complex relational phenomena
coupled with the latest peak of interest in Machine Learning have made neu-
ral networks able to handle graph data directly, a.k.a. Deep Graph Networks
(DGNs) [2], the de facto technology to tackle classification and regression tasks
on graphs. Since their introduction [11}/17], different types of DGNs have been
developed, most commonly based on the message passing (MP) paradigm [6].
Loosely speaking, MP is a generic three-step iterative procedure whose objective
is to update node embeddings based on the graph topology, which each DGN
implements internally in different flavors.

While DGNs have been repeatedly shown to generalize to unseen graphs,
the inductive biases [13], i.e., the set of assumptions implicitly made by the
model that make this generalization possible, are still not completely character-
ized, since they are encoded into a large set of learned parameters. Nevertheless,
knowing which inductive bias DGNs exploit is paramount to understanding and
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interpreting their decisions, enhancing their trustworthiness [15] and as a conse-
quence, their widespread adoption in safety-critical applications.

In this work, we contribute to this topic by applying eXplainable Artificial
Intelligence (XAI) techniques for graphs |1}/7,[8,/20] to analyze the behavior of
DGNs in synthetic graph classification tasks, deriving insights about the rich
landscape of the inductive biases that they implicitly exploit. By using the Class
Activation Mapping (CAM) |16,21] explainer, we first notice that different DGNs
(characterized by different MP variants) achieve almost perfect generalization
despite showing two different explanatory patterns (i.e., importance scores) at
the node level. This suggests that there are different learning “routes”,; all valid,
that a DGN can take to achieve the ultimate goal of generalization. We then
use the XAI metric of plausibility [9] to detect which explanatory pattern the
DGN has picked up, and show how it relates to the specific MP implementation.
More precisely, we show experimentally that the explanatory patterns align with
known properties of certain MP variants, and we show that by varying the MP
configuration the model shifts from one explanatory pattern to the other.

Our results shed light on how the different inductive biases that DGNs use
are leveraged to learn graph classification tasks. Moreover, they suggest that all
kinds of inductive biases are equally important and play a prominent role in the
end goal of generalization.

2 Background

In this section, we provide the notions to understand the proposed analysis.

2.1 Preliminary notions on graphs

A graph G = (Vg, Eg) [3] is defined as a tuple consisting of a set of vertices
Vo = {v1,...,un} and a set of edges E¢ C (Vg x Vo) = {(u,v) | u,v € V}.
The graph connectivity is usually formalized as an adjacency matriz A € R™*"
with A, , = 1[(u,v) € Eg|. The neighborhood of a node v is the set N, =
{u € V| (u,v) € Eg} of nodes connected to v by an edge. Graph nodes are
associated with feature vectors x,, € R¢ for some d € N, and we use the notation
X € R™*? to indicate the matrix of node features stacked row-wise. Therefore,
for the purposes of this work, we encode a graph with the tuple (A, X). Two
graphs G and G’ are said to be (structurally) isomorphic if there exists a bijection
¢ : Vg = Vg such that Yu,v € Vg, (u,v) € Eqg <= (¢(u), d(v)) € Egr.

2.2 Deep Graph Networks

In this work, we focus on graph classification tasks consisting of learning an
unknown function f that maps graphs G € G to class labels yg € C, where G
and C indicate a set of graphs and the discrete set of possible labels, respectively.
In this setting, a DGN implements a parameterized function fg which assigns
a predicted label g& to input graphs. During training, the parameters © are
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adjusted such that fg well approximates f. In this work, we specify a DGN as
the following function composition:

fo = F5 o 5% o 3, (1)
where

— fgia“s implements an isomorphic transduction of the input graph which maps

the node features x, to node embeddings h% € Rd/, d" € N, by applying MP
for L > 1 iterations.

— (5)2001 is a pooling operator that sums up the embeddings into a single graph

representation vector
> hler?.

veVg

- 5’;“ is a downstream classifier (in this work, it is a logistic regression model)

that outputs a |C|-dimensional vector of class probabilities based on the
graph representation:

Vo = softmax (90‘“ Z hf) .

veVg

The output of a DGN is the most likely class according to the output vector:
Jg = argmax yg.

2.3 Message passing variants

Usually, DGNs realize fat:ans with some form of MP. Generally speaking, MP is
a blueprint defined at the node level as follows:

hi"! = Upd (hj, Agg({Msg(hi, hi,) | u € N,})), @

where the Msg function computes a message between every node and its neigh-
bors; Agg combines all the messages received by each node from its neighborhood
in a permutation-invariant fashion; and Upd updates every node embedding by
combining the current node embedding and the aggregated messages. Each DGN
implements its own version of MP; broadly speaking, MP implementations can
be categorized as convolutional or recursive. Convolutional DGNs [2] implement
fgfans by stacking L > 1 MP layers, creating deep, end-to-end trainable architec-
tures that progressively expand the receptive field of the node embeddings |11].
Instead, recursive DGNs implement f;;"ms as a recursive contractive dynamical
system. This process is executed until convergence, with each iteration corre-
sponding to a single MP computation. This study focuses on three convolutional
DGNs and one recursive DGN architecture, as described in the following. Notice
that [ indexes the layer for convolutional MP, while for recursive MP, it indexes
the iterations.
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Graph Isomorphism Network (GIN) [19] convolutional layers implement
MP as follows (with 1 <1 < L, where L is a hyper-parameter):

h = x,, (3)

h!, = MLPg: ((1 +eHpity 3 hfj1> , (4)

ueN,

where € is a learnable or fixed parameter, Msg returns the neighboring embed-
ding, Agg is the sum function, and Upd is a sum function followed by a multilayer
perceptron (MLP) parameterized with layer-dependent weights ©.

GraphConv (GC) [14] convolutional layers implement MP as follows (with
1 <1< L, where L is a hyper-parameter):

hg = Xy, (5)

h! = ReLU (@g—lhgl +ey Y hff) , (6)
ue./\/'v

where Msg returns the neighboring embedding, Agg is the sum function, and
Upd is a sum function followed by a ReLU nonlinearity. Notice that the current
node embedding and the aggregated neighborhood embedding are weighted with
layer-dependent parameters ®; and Os.

The Principal Neighbourhood Aggregation (PNA) [4] convolutional
layer implements MP as follows (with 1 <[ < L, where L is a hyper-parameter):

h?} = X’U? (7)
hl, = MLP g1 (hgl, P MLPelzl(hil,hiLl)> (8)
ueEN,
with
mean
! td
S
P=|sDa=1) || (9)
mwn
S(D,a=-1)
max

where Msg and Upd are MLPs with layer-dependent parameters ®; and ®-s.
Similarly, the function @ realizes Agg, with S(D, ) being a degree-based scaler,
1 being an identity scaler, ® being a tensor product and mean, std, min, max
being the mean, standard deviation, minimum and maximum functions to ag-
gregate neighborhood messages, respectively.

Lastly, Graph Echo State Networks (GESN) [5] provides the following
efficient recursive message passing variant based on Reservoir Computing:

h) =0, (10)

h! =tanh | ©x,+ © Z hé._l (11)
JEN,
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where © is a weight matrix introducing residual connections, and © is the
recursive weight matrix shared across all L iterations. The efficiency and further
specific bias of this architecture come from the fact that both weight matrices are
untrained but carefully initialized, creating a contractive/Markovian dynamical
system that provides meaningful node embeddings to solve a task at convergence.
Specifically, the recursive matrix ® must be initialized such that for every input
X, and every initial state of the system, as the number of iterations grows to
infinity each node embedding reaches a stable fixed point. This is known as the
Graph Embedding Stability property for which one sufficient and one necessary
condition have been identified. The sufficient condition requires ||O[|||A] < 1
while the necessary condition requires p(®) < 1/, where p indicates the spectral
radius and « is the graph spectral radius |12]. The matrix @, instead, is randomly
initialized sapling values from the interval [—w, w]. It should be noted that both
p and w constitute hyperparameters of the architecture. However, L is not a
hyperparameter as it is for the convolutional variants. In GESN, L is a stopping
criterion in the form of the maximum number of allowed iterations, and therefore
MP operations, for the dynamical system to reach the required convergence and
provide meaningful node embeddings. As a consequence, L is usually large as
the convergence of the system is a prerequisite to solving tasks with GESN.

2.4 The CAM attribution method

The class activation mapping (CAM) technique is a local post-hoc XAI method
that assigns an importance score to each node in a graph. Specifically, given a
graph G and a DGN fg, the CAM method computes importance scores for each

node by exploiting the following equivalence in the f(;);t module:

. u L ut 1, L
logit(,) = O?y)t Z hy; = Z H?y)t h;. (12)
vEVG veVg

where logit(,) identifies the score associated to class y by its readout unit, 0?;;

is the weight vector of the readout unit associated with class y, and hZ are the
node embeddings computed by the model at the last layer L. In particular, CAM
exploits the observation that the final logits of a DGN, usually computed as a
linear transformation of the graph embedding Y-, .- h%, can be seen as the sum
of a weighted contribution of each node 0?;)'“ hZ to the logit.

Ultimately, the CAM method returns a vector tg € R™ where the i-th po-
sition stores the contribution (i.e., the importance score) of the i-th node to
the overall graph prediction. Among the many explainers for DGN architec-
tures available in the literature (see e.g., [181/20]), CAM was chosen since it does
not require the specification of hyperparameters, making it a suitable choice to
compare different MP-based DGNs on equal terms.
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3 Method

We develop our methodology on multiple XAI graph classification datasets of
the form D = {(G,ye,T) | G € G,y € C} where graphs G are associated
to target classes y as well as to sets of ground truth explanations T = {t7, €
{0,1}" | p € P} collecting a diverse ground truth (GT) for a given explanatory
pattern p in the set of explanatory patterns P. Specifically, the ground truth
explanation is a binary vector encoding the relevance (1) or irrelevance (0) of
each node to the graph prediction, while the explanatory pattern refers to the
properties of the substructure identified by the relevant nodes within the graph.
Our objective is to detect which explanatory pattern p is learned by different
MP configurations — number of layers for the convolutional variants. Moreover,
at fixed MP conditions, we also analyze the effect of training on the learned
policy by studying the 2-norms of the weights of the convolutional MP layers.

3.1 Explanatory pattern detection
The identification of the explanatory pattern proceeds as follows:

1. First, the dataset D is partitioned into a training set Diyain and a hold out
test set Diest- The training set is used to train and select the DGNs fg, while
the test set Dioqt 18 used for model assessment.

2. Once fo has been learned and its generalization is assessed, graphs in Dyt
are processed by the CAM explainer, generating a set of explanations {EG =
CAM(G, fo) | G € Dyest }; _

3. Finally, given an explanatory pattern p, we compute its plausibility Pls,,
which consists of the sample-wise Area Under the Receiver Operating Char-
acteristic curve (AUROC) between the explanations provided by CAM ta
with the corresponding ground truth explanations t7,:

Pls, = —— AUROC(tg, t%), (13)

We compute P?sp for each explanatory pattern p € P, and we determine the
detected explanatory pattern as the one that maximizes f;lsp. The choice of
plausibility to establish the explanatory pattern is due to the fact that its com-
putation does not require the definition of a threshold to transform explanations
into binary versions, which is mandatory for metrics like accuracy.

3.2 Analysis procedure to detect the training effect

Given a set of DGN models, characterized by the same MP type and itera-
tion number we compute the norms of all the learned weights as an indicator
of their differences due to the convergence of the training procedure to differ-
ent local minima. Then, we relate the average plausibility values of all models
P?sp, Vp € P, to their corresponding total norm values to understand the rela-
tionship between a learned policy and the models’ characteristics determined by
the training process at fixed MP conditions.
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4 Experiments

4.1 Datasets and prediction policies

We tested our approach on three different synthetic binary classification graph
datasets originally associated with a single explanatory pattern based on the
detection of diverse motifs in the graphs [9,|10]. In particular, the BA2Motif
dataset consists of 960 graphs with 25 nodes on average and assigns class 1 to
Barabéasi-Albert (BA) graphs linked to a house motif and class 0 to BA graphs
linked to a 5-node cycle motif; the BA2grid dataset consists of 2000 graphs with
22 nodes on average and assigns class 1 to BA graphs linked to a 3x3 grid motif
and class 0 to plain BA graphs; the GridHouse dataset consists of 2000 graphs
with 24 nodes on average and assigns class 1 to BA graphs linked to a 3x3 grid
and a house motif, class 0 to BA graphs linked to either the grid or the house.
However, each of these datasets admits a second explanatory pattern based on
the degree of each node. Specifically, perfect classifiers can be constructed using
only the average degree of the input graphs.

Class 0 Class 1

min max min max
BA2grid 1.87 1.93 2.20 2.4
BA2Motif 2 2 2.08 2.08
GridHouse 2.06 2.3 2.34 2.5

Table 1: Minimum and maximum average degrees by target class for each dataset.

In Table |1} we show that the maximum average degree characterizing class 0
graphs is always lower than the minimum average degree characterizing class 1
graphs for each dataset. Therefore, a DGN that learned this threshold would be
able to separate the two classes. Moreover, we also constructed the set of asso-
ciated ground truth explanations for the degree explanatory pattern, exploiting
the characteristic that the minimum average degree for class 1 graphs is always
above 2. Specifically, the associated ground truth vector marks nodes with a de-
gree > 3 as relevant (since they move the average towards class 1) and all other
nodes as irrelevant. Thus, in our experiments, P = {Degree, Motif}. Figure
shows the different explanatory patterns that can be picked up by the different
DGNs during training.

4.2 Model selection

The models used in this study have similar hyper-parameters, allowing for the
comparison between different MP variants. In particular, all convolutional mod-
els comprise a varying number of layers (up to a maximum of 5) followed by
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(a) Motif-based (b) Degree-based

Fig. 1: We show the two possible explanatory patterns associated with the data
employed in this study, using the BA2Grid dataset as an example. In both
cases, the graph is assigned class 1 if the graph contains the pattern (i.e., the
subset of nodes in blue). For the motif-based explanatory pattern (a), this subset
identifies a 3x3 grid motif. For the degree-based explanatory pattern (b), the
subset includes all nodes with degree > 3.

a sum pooling operation to generate the graph embedding and a single layer
MLP to map graph embeddings into class probabilities. The only exception to
the shared model scheme is GESN, as recursive architectures do not map MP
iterations to different layers. Consequently, for this MP variant, we only tested
a one-layer configuration while keeping the number of iterations large enough
(up to a maximum of 50) for the node embeddings to reach a stable fixed point
useful for classification purposes. The model selection procedure adheres to the
following scheme:

1. We split each dataset into training (80%) and test (20%) sets stratifying the
splits following the class distributions.

2. We perform a 5-fold cross-validation technique over the training set, testing
multiple hyperparameter configurations. In particular, for convolutional MP-
DGNSs, we used a grid search approach testing multiple values of the learning
rate, weight decay, number of units inside each layer, and number of layers.
As this latter hyperparameter is a key target of the analysis we kept its
grid-search range fixed across all convolutional MP variants (from 1 up to a
maximum of 5 layers). Other hyperparameter ranges instead have been tuned
to increase the number of models achieving high enough performances to be
kept as subjects of the analysis. Concerning, GESN, instead, the number
of layers has been kept fixed to 1 but we tested different values for the p
hyperparameter, the o input scaler, the size of the untrained reservoir and
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the 12 regularization coefficient of the trained readout. It is important to
stress that we kept the range of studied p values in the range between 0 and
1 to satisfy the Graph Embedding Stability property and keep GESN in a
contractive regime.

3. For the analysis purpose, we collected all models whose hyperparameter
configurations exceed an average Accuracy value across all folds of 90%.

Once we identified all suitable models we applied, to all of them, the procedures
to identify the learned explanatory pattern as well as the procedure to gather
information concerning the influence of training in the learned policy through
the computation of the norm of the weights.

5 Results

In Table |2, we show the average Plspegree and the Plsysoris values across the
selected hyperparameters configurations for each MP variant while grouping
results based on the number of MP iterations. From the table, it is possible to
see that both explanatory patterns have been picked up by the different DGNs
examined. This highlights that both patterns are useful and allow generalization,
despite their very different nature. In general, we observe that the preferred
explanatory pattern changes across MP variants as well as across different layers
(for convolutional MPs).

Delving into the results, two interesting phenomena can be observed. First, on
some convolutional MP variants, the explanatory pattern changes as the number
of MP layers increases. Specifically, GIN and GC with a low number of MP layers
(1-2) pick up the degree explanatory pattern; however, they switch to the motif
pattern at higher iterations. This result agrees with the expected inductive bias
of these models, which are able to capture low-order structures such as degree at
the lowest layers, and tend to capture more complex substructures such as motifs
with a large number of layers. Interestingly enough, while GIN with two layers
picks up the motif explanatory pattern, GC still prefers to pick up the degree
explanatory pattern with the same number of layers. This indicates that even if
the two MP variants have similar shifts from low-order to high-order explanatory
patterns, their learning behavior, dictated by their respective inductive biases,
is slightly different.

Second, there are MP variants whose explanatory pattern does not change
when varying the iteration number. Specifically, PNA constantly picks up the
degree explanatory pattern regardless of the number of MP layers; a behavior
that we associate with the model’s direct and easy access to the degree informa-
tion via the scaler S(D, «). Similarly, GESN, which is based on recursive MP,
picks up the degree explanatory pattern, independently by the explored hyper-
parameter configuration space. In the latter case, this behavior is in agreement
with the nature of recursive MP, since GESN matrices initialization imposes a
contractive/Markovian dynamics on the model, which leads the model to favor
localized information such as the degree. Overall, these results show that we can
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BA2grid BA2Motif GridHouse
Iterations 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
GIN Motif [0.79 0.95 0.99 1.00 0.99/0.78 0.83 0.92 0.95 0.96|0.76 0.90 0.98 0.99 0.99
Degree [1.00 0.84 0.83 0.77 0.75(1.00 0.74 0.80 0.69 0.61|1.00 0.83 0.85 0.80 0.79
feTe Motif [0.79 0.85 0.98 1.00 1.00{0.78 0.83 0.92 0.95 0.95/0.76 0.85 0.96 0.99 0.99
Degree [1.00 0.99 0.87 0.78 0.76(1.00 0.96 0.81 0.70 0.67|1.00 0.96 0.87 0.82 0.80
PNA Motif [0.79 0.83 0.84 0.84 0.84|0.77 0.78 0.77 0.78 0.77]0.76 0.76 0.75 0.75 0.75
Degree [1.00 1.00 1.00 1.00 1.00{1.00 0.99 0.98 0.96 0.97(1.00 1.00 1.00 1.00 1.00
Motif 0.80 0.78 0.70
GESN Degree 1.00 1.00 0.99

Table 2: Average values across the selected hyperparameter configurations of
Pls Degree and Plspsot: t, here indicated with Motif and Degree tags, respectively,
while grouped by the number of MP iterations (1-5). As GESN features one layer,
only a single value is reported. Higher values across MP types, iterations, and
prediction policies are shown in bold.

trace back to the inductive biases exploited by the DGNs by detecting which
explanatory patterns they have picked up in relation to their architecture.
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Fig. 2: Plausibility trends of the degree-based pattern and the motif-based pat-
tern with respect to the 2-norm of the learned weights for a soft biased MP
variant (2-layers GIN) on the BA2Motif dataset. A single model generates two
points as its explanations are scored against both available policies.

Figure [2| summarizes the analysis of the influence of training on the learned
explanatory patterns. The figure displays how the plausibility of the two ex-
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Fig. 3: Plausibility trends of the degree-based pattern and the motif-based pat-
tern with respect to the 2-norm of the learned weights for a hard biased MP
variant (1-layer GIN) on the BA2Motif dataset. A single model generates two
points as its explanations are scored against both available policies.

planatory patterns picked up by a 2-layered GIN model varies as the 2-norm
of the weights increases. Intuitively, smaller norms indicate that the learning
dynamics are more similar to a 1-layered variant (i.e., one that is only capable
of detecting low-order structures such as the degree) than larger norms. As can
be seen, when the 2-norm is smaller, the degree explanatory pattern has the
highest plausibility, while the setting slowly reverses and the motif explanatory
pattern has higher plausibility as the norm increases. This plot shows that in
certain MP configurations, the training dynamics (i.e., the local minima to which
the training procedure has converged, which itself is related to the norm of the
weights) play a role in determining which inductive bias is exploited by the DGN
to generalize. Contrast this finding with Figure [3] where a 1-layered GIN vari-
ant is depicted. In this case, the training dynamics are not influential, as the
weights norm does not determine a shift of explanatory pattern. In general, we
observe that when the inductive bias favors the degree explanatory pattern (i.e.,
1-layered convolutional variants or recursive variants with strong Markovianity),
the training procedure has little to no influence in determining the generalization
dynamics.

6 Conclusions

In this work, we studied the inductive biases of DGNs under the lens of XAI
Starting from the fact that DGNs achieve generalization according to different



12 M. Fontanesi, A. Micheli et al.

mechanisms that are relatable to their inductive biases, we have shown that we
can use tools from the XAI literature to unveil these mechanisms, drawing a
connection between the downstream explanatory pattern (which itself relates to
how the graph prediction is formed) and the upstream inductive bias of the MP
implementation.

Our experiments highlighted that even in controlled environments like syn-
thetic benchmarks, we can (i) witness the emergence of different explanatory
patterns and (ii) gain insights into the inductive bias of diverse MP variants
by identifying which pattern has been learned by each variant. Our analysis
revealed several differences across the studied MP variants. First, there are con-
volutional variants that align to different explanatory patterns depending on the
number of MP layers (specifically, GC and GIN). Second, for certain intermedi-
ate MP configurations (e.g., GIN with 2 layers), the 2-norm of the convolutional
weights (which depends on the training procedure) impacts the generalization
dynamics more than the MP specifics. Lastly, PNA (convolutional) and GESN
(recursive) consistently align to the degree explanatory pattern, indicating that
PNA'’s particular MP formulation and GESN’s contractive dynamics character-
ize their inductive bias.

We believe our results are relevant since they present novel insights concern-
ing the relationships between different DGNs, their MP implementation, and
the inductive bias they embody. The undisclosed rich diversity of inductive bi-
ases grants Machine Learning practitioners multiple opportunities to solve their
tasks and reach generalization capabilities by leveraging possibly diverse pat-
terns. As a consequence of the inductive biases’ effects on explanatory patterns,
we encourage Machine Learning practitioners to test multiple message-passing
variants to solve a given problem and use XAI techniques to check which ex-
planatory patterns grant good generalization and to which inductive biases they
can be related.

In subsequent works, our intention is to perform this analysis on a larger
scale, considering different (possibly real-world) datasets, further architectures,
and other XATI methods.
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