A Real-Time Support with Haptic Feedback for
Safer Driving using Monocular Camera

Giorgio De Magistris! [0000-0002—3076—-4509] ‘T orenzo Guercio', Francesco

Starnal, Samuele Russo2[0000—0002—1846-9996] Ngatalia Kryvinska3, and
9 9 y 9
Christian Napoli![0000-0002—3336—5853]

! Department of Computer, Control, and Management Engineering, Sapienza
University of Rome, via Ariosto 25, 00185 Rome, Italy
{demagistris,cnapoli}@diag.uniromal.it
2 Department of Psychology, Sapienza University of Rome, via dei Marsi 78, Roma
00185, Ttaly
samuele.russo@uniromal.it
3 Comenius University in Bratislava, Faculty of Management, Slovakia
Natalia.Kryvinska@uniba.sk

Abstract. Each year, car accidents impact billions of people, resulting
in numerous casualties. Consequently, road safety remains a top priority
for nations worldwide. This project aims to enhance driver safety through
a feedback system that relies solely on a monocular camera mounted atop
the vehicle. The proposed system is a real-time application designed to
warn drivers of imminent road hazards, which are classified by their level
of risk. Our method employs various computer vision techniques and in-
corporates a simple 2D-3D correspondence to estimate the longitudinal
and lateral distances of objects ahead of the vehicle, under certain simpli-
fying assumptions. The system conducts a comprehensive danger analysis
by evaluating potential hazards within the vehicle’s path. Depending on
the danger level, warnings are delivered to the driver with varying de-
grees of invasiveness, using haptic feedback. The proposed method was
tested on the KITTI dataset, yielding positive results.
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1 Introduction

In recent years, Artificial Intelligence for autonomous driving systems has be-
come more and more important and is having a huge impact in our life. The
most recent driving systems have been equipped with driver assistance functions
such as Lane Keeping Assistant (LKA) [18,29,6,2], Adaptive Cruise Control
(ACC) [30] and Brake Assist System (BAS) [17], in order to increase safety in
driving. All of these assistant functions rely on Computer Vision algorithms, in
particular on object detection and distance estimation [7]. Those techniques may
rely on different kinds of sensors, such as a LIDAR scanner [38, 24], monocular
[9] or stereo [23] cameras, and GPS [21]. The LiDAR scanner creates a 3D map
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of the surrounding environment and it is more accurate than 2D information,
but it can be very expensive. GPS alone is not adequate for real time assistance.
Camera images, instead, provide enough data to build a driver assistance func-
tion, and it is also a cheap sensor that can be easily installed in every vehicle.
In this paper we focus on developing a haptic feedback function that is com-
plementary with the Emergency Brake Assistant (EBA), to ensure safe driving
and avoid potential risks before the latter is activated. At each frame we first
take the image coming from a monocular camera, placed above the vehicle roof.
Then we detect and classify the objects in the scene using YOLOv4, that is a
one-stage object detector. We manipulate the camera calibration matrix in order
to recover longitudinal and lateral distances from the vehicle to the objects de-
tected. After that, we apply an object tracking algorithm on the objects in order
to track their motion. Then, for each object detected, we evaluate the potential
danger based on different specific criteria. Finally, we warn the driver with a
haptic feedback that is proportional to the level of danger. In particular, the
higher the value the more intrusive the feedback, until we reach the maximum
danger, where the EBA function will break the vehicle to avoid a hazard. We
evaluate our method on the KITTT raw dataset, using mean average precision
(mAP) for object detection, and root mean square error (RMSE) for distance
estimation.

2 Related Works

Recent advancements in haptic feedback systems have improved driving safety
by providing non-visual, non-auditory alerts. These systems use tactile or kines-
thetic feedback via the steering wheel, seat, or pedals to communicate critical
information like lane departures, proximity warnings, and collision risks. Haptic
feedback keeps drivers visually focused on the road while delivering essential
cues, proving more effective than visual or auditory alerts in some high-load
situations. As noted in [11], haptic systems are classified as either assistance sys-
tems, which provide continuous feedback for tasks like navigation or parking, or
warning systems, which alert drivers to immediate dangers like collisions. These
systems reduce driver response times and enhance spatial awareness, making
them essential in modern Advanced Driver Assistance Systems (ADAS). Stud-
ies show that combining haptic feedback with other sensory modalities further
enhances performance and reaction times in complex environments.

2.1 Object Detectors

State-of-the-art object detectors are mainly divided into two-stage and one-stage
detectors. Two-stage detectors (i) use a Region Proposal Network (RPN) to iden-
tify regions of interest, and (ii) classify objects and refine bounding boxes. These
methods, such as R-CNN [13] and Faster R-CNN [35], are accurate but slower
[4,5]. In contrast, one-stage detectors treat detection as a regression problem,
predicting bounding boxes and class probabilities in a single step, making them
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faster but generally less accurate [36]. Notable one-stage detectors include SSD
[27, 8] and YOLO [33]. For real-time systems, achieving over 10 FPS is crucial,
as the human visual system perceives individual images below this threshold and
motion above it [31]. Given its speed and performance, YOLOv4 [3] was chosen
for our system.

For further details, refer to the survey by [19], which covers various object
detection methods.

2.2 Distance Estimation

Current distance estimation in autonomous driving often relies on LiDAR, which,
like radar, calculates distance via time of flight. However, LIDAR is expensive.
In our work, we focus on monocular cameras, a cost-effective alternative. Stereo
cameras usually estimate depth through triangulation, but monocular cameras
can estimate 3D distances using techniques like inverse perspective mapping
(IPM) and 2D-3D correspondences under simplifying assumptions. This monoc-
ular approach, while less complex than stereo setups, provides adequate distance
estimation for most road scenarios. Stereo cameras require more complex hard-
ware and calibration to maintain alignment, adding to setup and maintenance
complexity. Monocular systems avoid these challenges.

Many recent works use IPM to compute longitudinal distances. For exam-
ple, [20] combines IPM and YOLO for object detection and distance estimation.
Similarly, [32] uses IPM, camera matrices, and lane detection to compute Eu-
clidean distances, while [1] employs IPM and HSV colormap to define the region
of interest and retrieve distances. However, IPM depends on the road’s vanishing
point, which can fail in curves.

Machine learning offers another approach to distance estimation. DisNet [15]
uses YOLO to train a neural network for supervised distance estimation, provid-
ing a dataset with 2D bounding boxes and distances. [22] developed FisheyeDis-
tanceNet, which estimates depth from fisheye images. While effective, machine
learning methods require extensive training and data.

Our approach is faster and simpler. By manipulating the camera matrix
and using 3D-2D correspondences from the Pinhole camera model, we efficiently
estimate longitudinal and lateral distances.

3 Pipeline

In this section we present our work. Each step of the pipeline (illustrated in
Figure 1) is designed to be executed frame by frame in real time during the
driving.

3.1 Object Detection

To evaluate potential dangers, we first need to detect all objects in the scene.
Our approach focuses on the one-stage detector YOLOv4, the fourth improved
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Fig. 1: The complete pipeline of the proposed method.

version of YOLO, chosen based on its balance between inference time and aver-
age precision. A modern one-stage object detector generally consists of three key
components. First, the backbone, which serves as a feature extractor, is typically
pre-trained on large datasets such as ImageNet [10]. Second, the neck is respon-
sible for analyzing and refining features from different stages of the backbone.
Finally, the head is tasked with generating bounding boxes and making class
predictions.

In the specific case of YOLOv4, the backbone used is CSPDarknet53, an
efficient architecture designed for feature extraction. The neck integrates Spa-
tial Pyramid Pooling (SPP) and PANet, which aggregate and process features
across multiple scales to enhance detection accuracy. The head is derived from
YOLOV3, responsible for generating precise bounding boxes and classifying ob-
jects within them. This combination allows YOLOvV4 to provide a strong balance
of accuracy and speed, making it ideal for real-time object detection.

Backbone The Cross Stage Partial Network (CSPNet) [37] was introduced
to reduce the computation of heavy neural networks, which is fundamental to
develop real-time applications on small devices. YOLOv4 applied CSPNet to

Darknet53, which is a convolutional neural network using residual connections
introduced in YOLOv3 [34].

Neck As an additional block placed after the backbone YOLOv4 implements
Spatial Pyramid Pooling (SPP) [16], which is a more robust method to image de-
formations (crop/warp) for both object detection and classification. To complete
the section, the Path Aggregation Network (PANet) [26] is added to enhance the
entire feature hierarchy, in order to let useful information in each feature level
propagate directly to the following proposal subnetworks.

Head YOLO divides the image into an S x S grid and for each grid cell predicts
B bounding boxes, each one consisting of 5 predictions: z, y, w, h and confidence.
Each grid cell also predicts C conditional class probabilities: Prob (Class| Object).
YOLOv3’s main idea is totally based on the original work, even if it predicts
boxes across three different scales, using a similar concept to Feature Pyramid
Networks [25]. For this reason, the predictions for the third scale benefit from all
the prior computation as well as fine grained features from early on in the net-
work. The 2D bounding box predictions are sufficient to estimate the distances
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from the vehicle to all the objects in the scene, since we need to know only the
lower side of the box, which represents the contact point of the object with the
road.

3.2 Distance Estimation

Before going into details, we have to state two simplifying assumptions: (al)
the road on which the vehicle and all the objects in the scene lie, must be a
planar surface, (a2) the camera installed on the vehicle must be stationary. These
simplifications allowed us to develop an efficient, easy and fast computational
method for distance estimation.

Camera Matrix Multiple View Geometry in Computer Vision [14] describes
how the pinhole camera model maps world points to image points. Using homo-
geneous coordinates we can write:

fe s xo| |Ri1 Ri2 Riz ty
P=K[R|t]= |0 f,y0| |R21 Raz Ras t2
0 0 1| |Rs1 R3z Razts

where: K is the 3x3 camera calibration matrix containing the intrinsic param-
eters, describing the focal length, the optical center, and the skew coefficient, and
R and t are the extrinsic parameters, namely rotation and translation of a rigid
transformation from 3D world coordinate system to the 3D camera’s coordinate
system.

In order to obtain the camera matrix, it is necessary to perform a camera
calibration process that can be done in different ways and it is implemented
in computer vision libraries like OpenCV. The camera matrix P defines how a
world point X is mapped to an image point z:

X

Y
o
1
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Y

3.3 2D-3D Correspondence

We start by defining the camera frame RF., which we will use from now on
for every transformation, it is a right-hand coordinate system with the y axis
pointing down (x axis points to the left and the z axis points out of the screen).
Given the camera matrix P, the height of the camera from the road to the vehicle
roof h, and the longitudinal distance from the camera to the front bumper of
the car b, we can now manipulate the camera in order to obtain a one-to-one
correspondence that maps image points z to world points on the road X. We
first translate the camera by multiplication with a transformation matrix 7"
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1000
P,=PI'=P|010h
001b

where b = camera2bumper and h = camera height

As we can see in Image 2, we have translated the camera matrix on the
road (height = 0) and towards the front side of the vehicle, through sequence of
homogeneous transformations, so that the distances are computed directly from
the central point of the bumper. At this point the assumptions come handy.
Thanks to (al) we simply eliminate from the camera matrix Py the Y column,
meaning that all the points projected to the real world have height equal to zero.
This is beneficial for computing the inverse projective mapping of (1), from world
point to image point:

X T
Z = Ptjylzo Y (2>
1 1

Thanks to (a2) we are able to define this mapping in every camera frame,
ignoring all the disturbances due to road irregularities and vehicle movements.
With this mapping it is easy to estimate longitudinal and lateral distances. Given
a generic 2D bounding box (z1, 22, z3, x4), coming from the object detection
step, we take the two contact points of the object with the road in image co-
ordinates, and we apply the inverse mapping (2), which gives us the left end
and right end sides in world coordinates. At this point we take the midpoint
between the two (tiong, tiat, 1), which corresponds to longitudinal and lateral
planar distances from the vehicle bumper to that object.

Fig. 2: Visualization of the T matrix transformation

3.4 Object Tracking

With the purpose of obtaining more specific information about the objects in the
scene, we implemented an Euclidean object tracking system. It works by storing
a dictionary of objects’ longitudinal and lateral distances, with their IDs as keys.
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For each object detected in a generic frame, the tracker is updated, taking as
input the vector (tjong, tier) of that object. The tracker compares the vector
with the stored dictionary, using Euclidean difference, and if the new vector is
sufficiently “close” to something, the dictionary entry of the corresponding point
is updated with the new distances, otherwise it is marked as a new ID. The
tracker works really well with objects detected within a certain lateral distance
range, beyond which we are no more interested in tracking. Once we have the
IDs of the objects in the scene, we can compute a few more properties such as
the relative longitudinal and lateral velocities (vViong, Viat) Of the objects with
respect to the vehicle, which are important in the danger evaluation phase for
making predictions of potential collisions.

3.5 Danger Evaluation

The evaluation of potential danger situations, in order to provide a danger haptic
feedback (DHF) complementary to the EBA function, is the core of our project.
We apply different criteria according to the following lateral distance subdivi-
sions (distances are considered laterally in both directions):1) danger zone:
from 0 to 2 m. These are all the objects detected right in front of the vehicle,
considering a total span of 4 meters; 2) attention zone: from 2 to 5 m. These
are all the objects detected just close to the vehicle; 3) safe zone: from 5 to 10
m. Further objects.

The zone limits have been chosen according to some considerations: 1) the
danger zone corresponds to the maximum lane width (3.75 m) approximated to
the next integer, 2) the attention zone comprises the next lane and an eventual
sidewalk, 3) the safe zone extends till the predictions of the object recognition
system give reliable results laterally (10 m). Distances are taken in modulus and
computed starting from the midpoint of the front bumper of the vehicle, positive
to the right.

Table 1: Table of vulnerability coefficient for evaluating dangerousness for dif-
ferent classes.

Car Van Truck Tram Misc Pedestrian Cyclist
Vulnerability 1.0 1.0 0.8 0.9 1.0 1.5 1.5

Table 2: Different level of haptic feedbacks depending on the dangerousness value
Dangerousness D 7< D <88<D<99<D<10 > 10
Haptic Feedback 1-level 2-level 3-level Break (EBA)
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We assigned to each zone a support coefficient and to each object class a
vulnerability coefficient. Such coefficients are: 1 for the Danger Zone, 0.8 for the
Attention Zone and 0.5 for the Safe Zone. The support coefficients add a reduc-
tion contribution to dangerousness, according to the zone where the object is
detected. The further the zone, the less dangerous the situation. The vulnerabil-
ity coeflicients take into consideration the class of the detected object. Colliding
a cyclist or a pedestrian, for example, is more dangerous than colliding a truck,
because it may cause a serious damage to the integrity and security of people
with a higher probability.

Evaluation For each detected object, we evaluate the dangerousness of a po-
tential accident in the following manner:

D = remap(Ver * ay x 32)

where D is the evaluated dangerousnees, V., is the criterion value, «,, is the
vulnerability class coefficient, . is the zone coefficient, and the remap function
remaps the value to the range 0, 10. Essentially the output value of the chosen
criteria is smoothed by the two coefficients and finally remapped to a valuable
range. The criterion are: stopping (longitudinal) distance, Euclidean distance,
intersection distance.

In this way we restrict the value of the multiplication from 0 to 10 applying
different criteria according to the zone on which the object is laying. In every
zone, we make use of the longitudinal velocity of the vehicle v., which can be
retrieved by sensors, such as Active Sensor Bearing (ASB), GPS or Inertial Mea-
surement Unit (IMU).

Danger zone. When considering an object detected in front of the vehicle,
the danger comes from the possible collision due to insufficient stopping distance
tstop- In fact, in each frame, we take into consideration the closest (longitudinally)
objects detected in the scene, taking their longitudinal distance. The smaller
tstop - tiong, the higher the probabilities to collide, if the object in front of the
vehicle unexpectedly stops. We compute the stopping distance as the sum of the
perception-reaction distance and the braking distance as:

Ve * treaction + 'UE/(2 * H * g)

where treqction 1S the reaction time, p is the friction coefficient and ¢ is the
gravity of the earth. Reasonable values for t,cqction and p are respectively 1 sec-
ond and 0.8, but these can vary according to the age of the vehicle driver and
to what kind of vehicle he is driving.

Attention zone. In the nearby zone, the danger comes from the possibility
of some objects to unexpectedly cross the danger zone and appear in front of the
vehicle. In this case we increase or decrease the danger according to the following
rules:



— If some object is going towards the danger zone and if the predicted lateral
shift of that object intersects the predicted longitudinal shift of the vehicle
(the directions of the object and the vehicle intersect), and it happens in less
than 3 seconds, the danger increase inversely proportional to the intersection
time. We call this criteria intersection distance.

— Otherwise, we consider only the Fuclidean distance, from the vehicle to the

Real-Time Driver’s Feedback from Monocular Camera

objects laying on the attention zone.

Safe zone. Objects detected at a lateral distance higher than 5 meters are not
dangerous at all. In order to preserve the previous criteria and provide continuity
to danger evaluation, especially in the case of objects crossing from the safe to
the attention zone, we use as a criterion the Euclidean distance, from the vehicle
to the objects laying on the safe zone. Image 3 shows some examples of danger

evaluation, in different scenarios.

&

longitudinal dist. (m)

3.6 Haptic Feedback

The value of dangerousness computed in the last step is used to give feedback to
the driver. Different kinds of actuators for our feedback system are possible, e.g.
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Fig. 3: Examples of Danger Evaluation
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vibration system installed on the steering wheel, smart band on the wrist, etc.
Every system is capable of generating a vibration on a intensity scale from 1 to
3. The values of dangerousness may be relevant and worthy of attention when
greater than 7. According to that value, we can map our haptic feedback system
together with the EBA as shown in Table 2.

4 Experiments

In this section we report the experiments and the results that we obtained, also
mentioning the data used and the hardware we used.

4.1 Dataset

We tested our work on the KITTI [dataset][12], which provides an annotated
dataset for 2D and 3D object detection, and also a raw dataset for testing pur-
poses. We used the object data for training and validating the object detection
model, while the raw data was used for testing the object detection, the distance
estimation and the object tracking, since the IMU information is provided only
for the least. We focused on the scenarios 0005, 0015, and 0091 of the raw data,
which respectively represent urban, highway and limited traffic zone scenarios.

4.2 Performances

We developed and tested our project on a Tesla T4 GPU with 12 GB of memory.
With this architecture our pipeline runs at 15 FPS.

Object Detection We trained the YOLOv4 model on KITTI 2D object data,
consisting of 7481 images randomly divided into 80% train, 10% validation and
10% test. The network has been initialized with pre-trained weights on Im-
ageNet. Training has been done using stochastic gradient descent with warm
restart (SGDR) [28] optimizer, with momentum 0.9, learning rate 103, and de-
cay 5*10, with batch size 64, for a total of 7500 iterations (about 60 epochs).
We evaluated the object detection on a small amount of data (about 750 im-
ages), because unfortunately the test set is not annotated. We obtained a mean
Average Precision (mAP) of 92.8%.

Distance Estimation We evaluated the distances with the RMSE metric, dis-
tinguishing between short/long and longitudinal/lateral distances. Longitudinal
distances are evaluated within 50 meters, while lateral distances within the zone
dimensions. Table 3 shows the results of the RMSE metric over two different
KITTI videos, while in Image 4 the error plots can be seen. Image 5 shows some
qualitative results of detection and distance estimation.
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Table 3: Performances on two different scenarios. The 0005 is calculated consid-
ering distances from a front cyclist. The 0015 is calculated considering distances
from a front car. Empty values are reported when measures were not available
or not enough to compute the relative metric.

Scenario Long. Distance Long. RMSE Lateral. Distance Lateral RMSE

<10m 0.908 <2m 0.228
10m-30m 1.931 2m-5m 0.306

0005 30m-50m - 5m-10m -
Total 1.492 Total 0.262
<10m - <2m 0.151

10m-30m 2.425 2m-5m -

0015 30m-50m 3.785 5m-10m -
Total 3.025 Total 0.151

100 120 13 % 100 %0 20 ED)

%0
Frames (0015)

]
Frames (0005)

Fig. 4: distance performances in two different scenarios

5 Conclusions

The proposed method has proved considerably effective in the conditions estab-
lished at the beginning of the paper and the budget necessary for its implemen-
tation is very low. However, some aspects must be considered before applying
the method in a real scenario: for example the method totally rely on object
detection: if there are errors in this step of the pipeline, there is no other type
of check is performed. Moreover the object detector works up to more or less 50
meters: it would be better if the detection reached about 100 meters (in order to
be more effective in highways for example). The proposed method may not work
properly in case of adverse visibility conditions or at night, due to the worse
performances of the object detection. Moreover, due to the initial assumptions,
we have a considerable margin of error when the machine "goes up and down"
due to the bumps.
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Fig. 5: Detection and distance estimation plots
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