
Regular Clocks for Temporal Task Specifications
in Reinforcement Learning

Giuseppe De Giacomo1,2[0000−0001−9680−7658], Marco
Favorito3[0000−0001−9566−3576], and Fabio Patrizi2[0000−0002−9116−251X]

1 University of Oxford, UK
2 Sapienza University of Rome, Italy

{degiacomo,patrizi}@diag.uniroma1.it
3 Bank of Italy

marco.favorito@bancaditalia.it

Abstract. Several recent approaches in reinforcement learning are study-
ing a conceptual architecture where the environment is simultaneously
represented at two (or more) levels of abstraction, with the environment
providing two traces of data/events/features/fluents, one at a lower-
level/finer grain and one at a higher-level/coarser grain. For simplicity,
most of this literature assumes that the instants of the two traces match.
In this paper, we drop this strong assumption and introduce an explicit
mapping between the low-level and the high-level traces that the high-
level trace perceives as a clock defined in terms of properties of segments
of the low-level one. We investigate the case of regular mappings, where
the segments that induce clock ticks are specified by a regular language
property or a finite-state machine. We show that if both the clock and
the high-level specifications are expressed as finite-state machines, such
as reward machines, we can combine the two specifications in polynomial
time into a single machine incorporating the clock. We then investigate
the case in which both the clock and the high-level task are specified
declaratively, e.g., in linear temporal logics on finite traces such as ltlf

and ldlf , and show that this yields a notable representational advantage
wrt a flattened representation where the clock is not explicit.

Keywords: Clock specification· Reinforcement Learning · Temporal Tasks

1 Introduction

Several recent works are focusing on a conceptual architecture where the envi-
ronment is simultaneously represented at two (or more) levels of abstraction,
each providing a different trace (or traces) of data/events/features/fluents: one
at a lower-level/finer grain and one at a higher-level/coarser grain [16, 18, 2, 5,
28, 3, 6, 15]. For example, the low-level trace could include environment features
directly observed by a reinforcement-learning (RL) agent while the high-level
trace could include logical fluents observed by a KR(-based) monitor, such as a
temporal specification, and used to reward the RL agent for carrying out some
task, according to the fulfilment of the (high-level) specification.



2 De Giacomo, Favorito, and Patrizi

For concreteness, we consider the unclocked setting discussed in [5], depicted
in Fig. 1a (the KR monitor was called “restraining bolt” in 1a). As standard
in RL, the RL agent interacts with the environment by observing a number
of features extracted by a suitable module, e.g., a set of sensors, performing
some actions, and possibly obtaining rewards. The observed features produce
the low-level trace. Besides, there are additional properties of the environment,
called fluents, that the RL agent is, in general, unaware of but are observable to
an external KR monitor. These correspond to the high-level trace. Fluents can
be complex properties which depend on the features but can also be features
themselves, possibly inaccessible to the agent due, e.g., to a lack of suitable
sensors. The KR monitor requires the agent to fulfil some requirements or carry
out an additional task, wrt to that implicitly defined by the standard reward
function. This is achieved by defining an additional, possibly non-Markovian
reward function, based on the fluents, implemented by the KR monitor. It is
important to observe that this setting implicitly makes the assumption that the
feature and fluent traces are aligned, i.e., they produce the next observation at
the same time, [5, 15].

In this paper, we advocate the introduction of a specific component to allow
for loosening the synchronicity requirement of the two traces; see Fig 1b. The
clock component generates the time points of the high-level trace for the KR
monitor by checking relevant properties of the current prefix of the low-level
trace of features. This allows for a better representation of the KR monitor, de-
coupling the handling of the clock from the high-level specification that uses it.
For example, imagine that the high-level property checked by the KR monitor
depends only on the data items produced at even time points (0, 2, 4, . . .). Intro-
ducing a clock component allows the KR monitor to offer a reward based only
on the time points of interest without needing to keep track of each time point’s
parity; on the other hand, if the clock module is not present, the KR module
must track parity, cluttering the specification of the KR monitor itself.

In this paper, we explore the benefits and the implications of dropping the
strong common-clock assumption for feature and fluent extractors. We do so by
introducing an explicit mapping between the low-level and the high-level traces,
which is perceived by the high-level trace as a clock, defined in terms of properties
of segments of the low-level trace. We require the mapping to be regular, in the
sense of regular languages [13].

We study the case in which the KR monitor consists of a Reward Machine
(RM) [15], and the clock consists of a finite state transducer, or automaton,
(FSA). We solve reinforcement learning in this setting by showing how to com-
pile the clock aware in a more involved reward machine which although clattered
by the handling of the clock and hence less intuitive, can be computed auto-
matically in polynomial time. In this way, we obtain both the representational
advantage of decoupling the clock from the KR monitor while still maintaining
the effectiveness of the reward machine approach.

We then discuss the case where the clock and KR monitor are specified
declaratively using a linear temporal logics on finite traces, in particular, ltlf



Regular Clocks for Temporal Task Specifications in Reinforcement Learning 3

Environment/World

Learning Agent
(model-free)

KR-based Monitor
(model-based)

actionfeatures

rewards from monitor

Fluents 
Extractor

Features 
Extractor

fluents

rewards from environment

(a) Unclocked framework [5].

Environment/World

Learning Agent
(model-free)

KR-based Monitor
(model-based)

actionfeatures

rewards from monitor

Clock

Fluents 
Extractor

Features 
Extractor

fluents

rewards from environment

(b) Clocked framework.

Fig. 1: The standard agent-environment systems with a KR-based monitor.

or ldlf [8]. Notice that ldlf has exactly the expressive power of regular expres-
sion (i.e., that of Monodic Second Order Logic on finite traces). Instead ltlf
has the expressive power of star-free regular expressions (i.e., that of First-Order
Logic on finite traces). As a result, we can compile ltlf/ldlf KR monitor spec-
ifications and clock specifications in Reward Machines and FSA specifications,
respectively, and adopt the techniques above for doing reinforcement learning.
This gives us a procedure that is worst case 2EXPTIME-complete, as in the case
of unclocked specifications [2, 5]. In fact, the overhead introduced by the clock
is minimal.

Finally, a natural question arises: can, at least in principle, clocked speci-
fications in ldlf and ltlf be translated into unclocked specifications in ldlf
and ltlf , respectively? In the case of ldlf , the answer is obviously positive
since ldlf can capture any regular language and hence also that obtained from
compiling the clock into a finite state reward machine. For ltlf , proving that
this is the case is not as simple because it has to show that the specific Carte-
sian Product construction that we use to compile away the clock specification
preserves being star-free. We do show this in the paper.

Note that these expressivity results do not induce an easy (polynomial) way of
compiling away the logical specification of the clock into the logical specification
of the KR monitor. The specific constructions used for the proof would generate
a 2EXPTIME-blowup in the specification. We leave it to future work whether
this upper-bound can be improved. In any case, as we show here, the approach
does not need this compilation.

2 Preliminaries

LTLf and LDLf . ltlf and ldlf are, respectively, Linear Temporal Logic
and Linear Dynamic Logic with finite trace semantics, proposed in [8]. ltlf



4 De Giacomo, Favorito, and Patrizi

shares the same syntax of ltl [22]. It is as expressive as First-Order Logic over
finite traces (fol) or star-free regular expressions, so strictly less expressive
than regular expressions, which, in turn, are as expressive as Monadic Second-
Order logic over finite traces (mso). The semantics of such logic formalisms are
given in terms of finite traces denoting a finite, possibly empty, sequence π =
π0, . . . , πn of elements from the alphabet 2P , containing all possible propositional
interpretations of the propositional symbols in P. Notice that, differently from
[8], we allow the empty trace as in [2] and [7]. Given a set P of propositional
symbols, ltlf formulae are built as follows:

φ ::= tt | ϕ | ¬φ | φ1 ∧ φ2 | ◦φ | φ1 U φ2

where tt is the tautology (not to be confused with true = ϕ ∨ ¬ϕ), ϕ is a
propositional formula over P,◦ is the next operator, and U is the until operator.
We adopt the usual Boolean abbreviations for disjunction, implication, etc. In
addition, we use common abbreviations of temporal operators. For the weak
next operator •, we have •φ ≡ ¬◦¬φ (notice that in the finite trace case
¬◦¬φ ̸= ◦φ), for the release operator R, we have φ1 Rφ2 ≡ ¬(¬φ1 U ¬φ2), for
eventually (3) we have 3φ ≡ trueU φ, for always (2) we have 2φ ≡ ¬3¬φ.
Finally, we have last ≡ •(false).

ldlf is a temporal logic as natural as ltlf , but with the full expressive
power of Monadic Second-Order logic over finite traces. ldlf is obtained by
merging ltlf with regular expressions (ref ) through the syntax of the well-
know logic of programs pdl, Propositional Dynamic Logic [10, 11], but adopting
a semantics based on finite traces. ldlf is an adaptation of ldl introduced in
[27], which, like ltl, is interpreted over infinite traces. We omit the details on
the syntax of ldlf due to lack of space, but one property that we will use is that
regular expressions can easily be encoded into a ldlf formula. The semantics
of a ltlf/ldlf formula is defined over finite traces; its full definition can be
found in [2]. Given a finite (possibly empty) trace π, by π, i |= φ we denote that
the ltlf/ldlf formula φ is satisfied by π at instant i ∈ N. We write π |= φ, if
π, 0 |= φ and say that π satisfies φ. Moreover, from an ltlf/ldlf formula φ,
we can compute a dfa Aφ that accepts all and only the traces that satisfy φ [8,
2].
Automata theory A deterministic finite-state automaton (dfa) [24] is a 5-
tuple A = ⟨Q,Σ, q0, F, δ⟩ where Q is the (non-empty) finite set of states, Σ is
the finite set of input symbols (alphabet), q0 ∈ Q is the initial state, F ⊆ Q is
the set of accepting states, and δ : Q×Σ → Q is the transition function. The ex-
tended transition function δ∗ of A is δ∗(q, ϵ) = q and δ∗(q, wa) = δ(δ∗(q, w), a).
An automaton A accepts a word w if δ∗(q0, w) ∈ F . The language of A, de-
noted L(A), is the set of words that A accepts. A non-deterministic finite-state
automaton (nfa) is defined in the same way as a dfa, except for δ, which is a
relation rather than a function, i.e. δ ⊆ Q×Σ×Q. A Mealy machine Me [20] is a
6-tuple Me = ⟨Q,Σ, Γ, q0, δ, θ⟩ where Q is the finite set of states, Σ is the finite
set of input symbols, Γ is the finite set of the output symbols, q0 is the initial
state, δ : Q×Σ → Q is the transition function, and θ : Q×Σ → Γ is the output



Regular Clocks for Temporal Task Specifications in Reinforcement Learning 5

function that maps transition to output symbols. A Moore machine Mo [21] is
like a Mealy machine except that the output function is defined as θ : Q → Γ ,
i.e., it maps states to output symbols. The output of Me on word a1 . . . an is
θ∗(a1 . . . an) = θ(q0, a1)θ(δ

∗(q0, a1), a2) . . . θ(δ
∗(q0, a1, . . . , an−1), an). An analo-

gous definition exists forMo. A Mealy/Moore machineM defines a regular trans-
duction function FM : Σ∗ → Γ ∗ mapping words over the input alphabet Σ into
words over the output alphabet Γ . dfas and nfas are known as acceptors, while
Mealy and Moore machines as transducers. From a dfa A = ⟨Q,Σ, q0, δ, F ⟩, we
can obtain a Mealy machine MA = ⟨Q,Σ, Γ, q0, δ, θ⟩, with θ(q, a) = accept iff
δ(q′, a) ∈ F , s.t., for every word w ∈ Σ∗, we have that w ∈ L(A) iff the last
character of FMA(w) is accept. The reverse is possible, too. Likewise, we can
transform a Mealy machine into an equivalent Moore machine, and vice versa.
See [13, 17].
MDPs and RL. A Markov Decision Process (MDP) M = ⟨S,A,Tr , R⟩ contains
a set S of states, a set A of actions, a transition function Tr : S ×A→ Prob(S)
that returns for every state s and action a a distribution over the next state,
and a reward function R : S×A×S → R that specifies the reward (a real value)
received by the agent when transitioning from state s to state s′ by applying
action a. A solution to an MDP is a function called a policy, assigning an action to
each state, possibly depending on past states and actions. The value of a policy ρ
at state s, denoted vρ(s), is the expected sum of (possibly discounted by a factor
γ, with 0 ≤ γ ≤ 1) rewards when starting at state s and selecting actions based
on ρ. Typically, the MDP is assumed to start in an initial state s0, so policy
optimality is evaluated w.r.t. vρ(s0). Every MDP has an optimal policy ρ∗. In
discounted cumulative settings, there exists an optimal policy that is Markovian
ρ : S → A, i.e., ρ depends only on the current state, and deterministic [23].
Reinforcement Learning (RL) is the task of learning a possibly optimal policy,
from an initial state s0, on an MDP where only S and A are known, while Tr
and R are not—see, e.g., [26]. A non-Markovian reward function [1] is defined
as R̄ : (S×A)∗→R, i.e. a real-valued function over finite state-action sequences.
Usually, R̄ is specified using a pair (φ, r), where φ is a ltlf/ldlf formula: if the
current (partial) trajectory is π=⟨s0, a1, . . . , sn−1, an⟩, the agent receives at sn a
reward r iff π |= φ (where si ∈ 2P) [2]. A Non-Markov Reward Decision Process
(NMRDP) is like an MDP except that the reward function is non-Markovian.

3 Clocked Framework

Let Mag = ⟨S,A,Trag , Rag⟩ be an MDP on which the learning agent acts. Let
fr : L∗ → R a high-level reward function, with L = 2F the set of possible fluents’
configurations, and R ⊆ R a finite set of reward values. Additionally, we consider
a clock function (or simply clock) fc : L∗ → {0, 1}, with 0 meaning “low” state
and 1 meaning “high” state. We also say that the clock ticks on trace t whenever
fc(t) = 1. The role of the clock is to exclude particular fluent observations before
giving them as input to the high-level reward function. We assume that both fr
and fc are regular functions over histories, therefore they can be represented by



6 De Giacomo, Favorito, and Patrizi

a finite-state machine formalism (e.g. Mealy machines or dfa). The diagram in
Figure 1b depicts at a high level the scenario we have in mind: the inner loop
(red) of interaction between the learning agent and the environment is similar
to the agent-environment loop of an RL scenario, while the outer loop (blue)
starts from the fluents extractor, which outputs a high-level representation of
the world state in the form of a fluent configuration ℓ ∈ L, passes through the
clock function evaluation and, if the history so far makes the clock to be in the
“high” state, then the fluents observation is fed to the high-level reward function.

t

t′

fc fc fc fc fc fc fc

Fig. 2: Intuitive representation of how
the clock function fc projects the low-
level trace t into the high-level trace t′.

Figure 2 intuitively explains how
the filtering mechanism of the clock
function fc works. Circles represent
trace timesteps. The bottom trace t
has the finest time granularity. The
clock function fc is evaluated on ev-
ery trace prefix. Let us introduce some
notation for traces: for a trace t =
ℓ0, . . . , ℓn, length(t) = n+ 1 (or |t|) is
a positive integer denoting the length
of t, t[i] is the i-th step of t (with
0 ≤ i < length(t), and t[i : j] be
the subtrace t[i], t[i+1], . . . , t[j] (with
0 ≤ i ≤ j < length(t)). If the trace
prefix at some time i makes the for-
mula fc true (i.e. F (t[0 : i]) = 1), then the timestep is passed to the evaluation
of fr, and becomes a timestep of the coarser-grained timestep sequence t′. On
the other hand, if for some timestep i, the trace prefix up to that timestep does
not make fc to tick, then the configuration at timestep i, i.e. t[i], is ignored at
the higher level trace t′.

We now proceed with a complete formalization. To do so, we start with the
notion of trace projection:

Definition 1 (Trace Projection [9]). Let t ∈ L∗ be a trace over the set of
fluents configurations L = 2F , and let fc be the clock function. The projection
of t onto clock function fc is the trace t|fc = ℓ′0, ℓ

′
1, . . . , ℓ

′
n, where ℓ′i = t[i], if

fc(t[0 : i]) = 1, and ℓ′i = ϵ, otherwise.

Intuitively, the projection is obtained from t after removing the timesteps with
index i = 0, . . . , n for which the prefix of the trace up to position i (included)
does not make fc evaluate to 1. Note that this notion is analogous to that in [9].
However, the crucial difference is that their clock operator only looks at the
current instant, while ours can model temporal constraints.

Example 1. Let t = ⟨{a, b}, {b}, {c}, {a}, {b, c}⟩, and for any trace t′, let fc be
a clock function such that fc(t′) = 1 if a ∈ t[length(t) − 1], otherwise 0. Such
behaviour can be intuitively explained as “every time a is true, the clock is
high”. The projected trace t|fc is then {{a, b}, {a}}. The second, third, and fifth
timesteps are filtered out because a does not hold.



Regular Clocks for Temporal Task Specifications in Reinforcement Learning 7

Example 2. Let t = ⟨{a}, {b}, {c}, {a}, {b}, {c}⟩, and let fc(t′) = 1 if length(t′)
mod 2 = 0, otherwise 0. Intuitively, the clock is high (resp. low) at each even
(resp. odd) time step. The projected trace is t|fc = ⟨{a}, {c}, {b}⟩.

The clock mechanism makes the high-level reward function evaluated only when-
ever the clock ticks. Given fc and fr, the clocked reward function R̄cr : L∗ → R
is as follows:

R̄cr(t) =

|t|−1∑
i=0

γifr(t[0 : i+ 1]|fc) · fc(t[0 : i+ 1]) (1)

The clocked reward function R̄cr(t) gives rewards at the clock tick only, and
the reward function fr is evaluated only on the trace projected onto the clock fc.
Note also that R̄cr(t) is a non-Markovian reward function since its value depends
on the full trace history of fluents configurations t.

In our scenario, we are interested in learning an optimal policy for the MDP
Mag , where the reward function to optimize is the expected discounted sum
of rewards, both from Rag and R̄cr. To do so, as in other works, e.g. [5], we
assume that the agent actions in A induce a Markovian transition distribution
over the features and fluents configuration: Tr ℓag : S × L × A → Prob(S × L),
and the interaction between the agent and the environment yields a trajectory
τ = (s0, ℓ0), a0, (s1, ℓ1), a1, . . . , (sn, ℓn). Hence, the value function of a policy
ρ takes the form vρ(s0) = Eτ∼Trℓ

ag

[
R̄(τ)

]
, where R̄(τ) =

∑n
i=0 γ

iRag(si, ai) +

R̄cr(ℓ0, . . . , ℓn).
Note that, in general, since the reward function is non-markovian, the optimal

policy could be non-Markovian too, i.e. ρ̄ : (S ×L)∗ → A. We call the NMRDP
induced by Tr ℓag and R̄(τ) as Mℓ

ag . We can now state our target problem:

Problem 1. Given the tuple ⟨Mℓ
ag , fr, fc⟩, where Mℓ

ag = ⟨S×L, A,Tr ℓag , R̄⟩ is a
learning agent, fr : L∗ → R is a high-level reward function, and fc : L∗ → {0, 1}
is a clock function, find a policy ρ̄ : (S×L)∗ → A such that vρ̄(s0) is maximized.

Observe that this setting is rather general since fr and fc are only assumed to be
regular functions of histories. Two popular ways of representing regular functions
is either via finite-state machines, like transducers, or via declarative languages
(e.g. temporal logics). In the next sections, we consider both cases and provide
a solution technique to solve our problem.

4 Clocked Reward Machine

In this section, we consider the case where fr and fc are specified as finite-
state machines. In particular, we consider a reward transducer (or reward ma-
chine) Mr = ⟨Qr,L,R, qr0, δr, θr⟩ with R ⊆ R the output alphabet, i.e. a fi-
nite set of reward values, and a clock transducer (or clock machine) Mc =
⟨Qc,L, {0, 1}, qc0, δc, θc⟩. In particular, for a trace t = ℓ0, . . . , ℓn, we define fMr

(t) =
θr(δ

∗
r (q

r
0, ℓ0, . . . , ℓn−1), ℓn) as the reward function of Mr, i.e. fMr (t) is the last



8 De Giacomo, Favorito, and Patrizi

qr0

qr1

b/1.0

¬b/0.0

⊤/0.0

qc0

¬a/0

a/1

q00

q10

a ∧ b/0.0

¬a ∨ ¬b/1.0

⊤/0.0

Fig. 3: Mr, Mc, and Mcr of Example 3.

outputted reward by Mr on input t, while fMc
(t) = θc(δ

∗(q0, ℓ0, . . . , ℓn−1), ℓn)
as the clock function of Mc. The reward transducer is a well-known concept in
reinforcement learning for high-level task specifications, e.g. see [14, 15, 4].

We show how, given Mc and Mr, we can compute a new Mealy machine
Mcr = ⟨Qcr,L,R ∪ {0}, qcr0 , δcr, θcr⟩, that we call the clocked reward machine,
such that the function it represents is precisely R̄cr when fr = fMr

and fc = fMc
.

Such machine Mcr is defined as follows:

– Qcr = Qc ×Qr;
– qcr = (qc0, q

r
0);

– δcr((qc, qr), ℓ) =

{
(δc(qc, ℓ), qr) if θc(qc, ℓ) = 0

(δc(qc, ℓ), δr(qr, ℓ)) if θc(qc, ℓ) = 1
;

– θcr((qc, qr), ℓ) =

{
0 if θc(qc, ℓ) = 0

θr(qr, ℓ) if θc(qc, ℓ) = 1

Intuitively, the clocked reward machine is like the classical synchronous product
between two transducers, except that the state component coming from the
reward machine qr is progressed only if the clock component qc, after reading
the symbol ℓ, is such that the clock output is 1. The clocked reward function
corresponding to Mcr is R̄Mcr

(t) =
∑n

i=0 γ
iθcr(δ

∗(qcr0 , t[0 : i− 1]), t[i]).
The correctness follows by construction:

Theorem 1. Let Mr and Mc be a reward machine and a clock machine, respec-
tively, and let fr and fc their reward and clock functions. Let the clocked reward
machine Mcr. Moreover, let R̄cr(t) be a clocked reward function with fr = fMr

and fc = fMc
. We have that, for all traces t, R̄Mcr

(t) = R̄cr(t)

Proof. We prove the claim by induction on the length of the trace t = ℓ1, . . . , ℓn.
If t = ϵ, then R̄Mcr

(t) = R̄cr(t) = 0. Now assume the claim holds for tn−1 =
ℓ1, . . . , ℓn−1, and let tn = tn−1ℓn, Let qcrn−1 = δ∗cr(tn−1) be the last state of the run
over trace tn−1. On one hand, we have R̄Mcr (tn) = R̄Mcr (tn−1)+γ

nθcr(q
cr
n−1, ℓn),

by definition of R̄Mcr , while on the other hand we have R̄cr(tn) = R̄cr(tn−1) +
γnfMr

(tn|fMc
) · fMc

(tn), by definition of R̄cr (Equation 1) and by assump-
tion. Since R̄Mcr

(tn−1) = R̄cr(tn−1) by inductive hypothesis, it remains to
prove that θcr(qcrn−1, ℓn) = fMr

(tn|fMc
) · fMc

(tn). We have two cases: either
θc(q

c
n−1, ℓn) = 0, or θc(qcn−1, ℓn) = 1. In the former case, by construction of



Regular Clocks for Temporal Task Specifications in Reinforcement Learning 9

θcr, we have θcr(qcrn−1, ℓn) = fMc
(tn) = 0. Hence, the claim holds. In the latter

case, on one hand we have θcr(qcrn−1, ℓn) = θr(q
r
n−1, ℓn), by definition of θcr, and

on the other hand fMr (tn) = θr(q
r
n−1, ℓn). Hence, both terms are equal.

Example 3. Let Mr be the reward machine for the goal “reach b” (Figure 3, left),
and let Ac be the clock machine that ticks whenever a is true (Figure 3, middle).
The clock product Mcr is shown in Figure 3, right. Note that the transition of
the Mr-component of the state is made only if the clock is high, i.e. when the
symbol a holds in the current timestep.

Based on the clocked reward machine construction, we now provide a solu-
tion to Problem 1 in case fr and fc are specified as Mealy machines Mr and
Mc, respectively. Starting from Mℓ

ag and Mcr, we construct the MDP M′ =

⟨S′, A′,Tr ′, R′⟩, defined as follows:

– S′ = S × L×Qcr;
– A′ = A

– Tr ′((s, ℓ, q), a, (s′, ℓ′, q′)) =

{
Tr(s, a, s′) if q′ = δ(q, ℓ′)

0 otherwise.
– R′((s, ℓ, q), a, (s′, ℓ′, q′)) = Rag(s, a, s

′) + θcr(q, ℓ
′)

By construction, and by Theorem 1, it holds that the MDP M′ is equivalent to
the NMRDP Mℓ

ag , in the sense of [1], and therefore optimal policies ρ′ for M′

can be transformed in optimal policies for Mℓ
ag :

Theorem 2. An optimal policy for the NMRDP Mℓ
ag with fr = fMr and fc =

fMc
, can be learned by learning corresponding optimal policies for the MDP M′.

In other words, one can solve Problem 1 by first finding an optimal (memoryless)
policy ρ′ for M′, and then by defining an equivalent policy on Mℓ

ag , as follows:
let τ = (s0, ℓ0), a1, (s1, ℓ1), . . . , (sn−1, ℓn−1, an) be the current trajectory of the
process leading to state (sn, ℓn). Let qn denote the current state of Mealy machine
Mcr, given input t = ℓ0, . . . , ℓn. Then, we define ρ̄(τ) := ρ′(sn, ℓn, qn).

In fact, by using a technique analogous to [5], one can show that we can
restrict the policies of interest by dropping the fluents configurations L from
the agent features. Hence, the resulting state space of the new MDP M′′ would
be S × Qcr, with the state component Qcr being progressed correctly by the
environment.

Theorem 3. An optimal policy for the NMRDP Mℓ
ag with fr = fMr

and fc =
fMc can be learned by learning corresponding optimal policies for the MDP M′′.

Proof sketch. By Theorem 2, there exist an optimal policy ρ′ such that ρ̄ com-
puted from ρ is also optimal for Mℓ

ag . There exists a corresponding optimal
policy for M′′, ρ′′ : S × Qcr → A, which differs from ρ′ by dropping the L
component of the state; optimality of ρ′′ wrt M′′ can be shown by marginalizing
the transition function distribution T ′′ over ℓ’ (see proof of Theorem 6 in [5]).
As a consequence of Theorem 3, one can solve the learning problem of Problem
1 by learning an optimal policy for M′′.



10 De Giacomo, Favorito, and Patrizi

5 Declarative Clock Specifications

In this section, we study a variant of Problem 1 where the reward and clock func-
tions are specified declaratively using a formal regular language, e.g. ltlf and
ldlf . The main advantages of doing so are (i) the use of a high-level, human-
understandable language, (ii) succinctness with respect to the finite-state ma-
chine formalism (in the best case, a doubly-exponential gain), and (iii) better
modularity and composability of specifications. Note that any logic formalism
with finite trace-based semantics that is not more expressive than regular ex-
pressions can be used in our framework (e.g. Pure-Past ltl [7]). At a high level,
the solution method in the declarative setting works by transforming both the
reward and clock specifications into a reward machine and a clock machine; then,
we rely on the solution introduced in Section 4.

More formally, we have a reward specification (φr, r), where φr is the ltlf/ldlf
formula that has to be satisfied in order to give the reward signal r to the agent
(as in [2, 5, 4]), plus a clock specification φc, another ltlf/ldlf formula which
specifies the clock function. Their respective reward function fφr

and the clock
function fφc

are defined as follows:

fφr
(t) =

{
r if t |= φr

0 otherwise.
fφc

=

{
1 if t |= φc

0 otherwise.

Intuitively, the reward function fφr (t) returns r whenever t |= φr, otherwise
it gives no reward signal. Similarly, the clock function fφc(t) is 1 iff t |= φc.
A clocked reward specification is the triple (φr, φc, r), and the derived clocked
reward function R̄φr,φc

is defined by starting from R̄cr and by setting fr = fφr

and fc = fφc
.

Example 4. Continuing Example 3, let the reward specification be (φr, r), where
φr = 3b and r = 1, and φc = 3(a ∧ last). We have that fφr

= fMr
and

fφc
= fMc

.

In order to solve this declarative variant of Problem 1, we resort to a reduction
to the solution shown in Section 4. To do so, we proceed in steps. First, from
the reward specification (φr, r), we compute the DFA equivalent to φr, Aφr

=
⟨Q,L, q0, F, δ⟩. Then, we define the Moore machine M ′ = ⟨Q,L, {0, r}, q0, δ, θ⟩
where θ(q) = r if q ∈ F , otherwise θ(q) = 0. From M ′, we can compute its
equivalent Mealy reward machine Mφr . An analogous transformation can be
made for the clock specification, i.e. from φc to the clock machine Mφc . Finally,
we can resort to the solution presented in Section 4 to solve our problem.

Theorem 4. Let ⟨Mℓ
ag , fφr

, fφc
⟩ be an instance of Problem 1 in which fφr

and
fφc are specified by a ltlf/ldlf reward specification (φr, r) and φc, respec-
tively. Then, optimal policies for ⟨M ℓ

ag , fMφr
, fMφc

⟩ are also optimal policies for
⟨Mℓ

ag , fφr
, fφc

⟩.

Proof. By construction and by Theorem 1.



Regular Clocks for Temporal Task Specifications in Reinforcement Learning 11

qr0

qr1

qr2 qr3

⊤/0

p/r ¬p/0

⊤/r ⊤/0

qc0

qc1

q/1

¬q/0

q/1

¬q/0

qcr0

qcr1

qcr2 qcr3

q/0

¬q/0

p ∧ q/1
¬q/0

¬p ∧ q/0

⊤/1 ⊤/0

Fig. 4: Machines for Example 5, from left to right: reward machine for (◦p, r),
clock machine for φc, and reward machine for the unlocked-equivalent specifica-
tion (φcr, r)

6 Unclocked-Equivalent Specifications

Given a ltlf/ldlf clocked reward specification (φr, φc, r) we ask ourselves
whether there exist an unclocked-equivalent reward specification (φcr, r) such
that for all traces t, R̄φcr

(t) = R̄cr(t), where R̄φ(t) =
∑n

i=0:t[0:i]|=φ γ
ir. We

answer positively, and we explain a way to compute φcr, given a clocked speci-
fication (φr, φc, r). The following theorem shows how, by construction:

Theorem 5. Given a clocked reward specification (φr, φc, r), there exist a ldlf
reward specification (φcr, r) such that R̄φr,φc

= R̄cr.

Proof. First, we compute the DFAs Ar and Ac, which are the DFAs equivalent to
φr and φc, respectively. Then, we consider their equivalent Mealy machines MAr

and MAc
, as explained in the Preliminaries, from which we can compute Mcr

using the clocked product (see Section 4, with the only difference that the output
alphabet is not a set of rewards fr but instead {accept}). Since Mc behaves as
an acceptor, we can compute its equivalent DFA Acr. Then, we can compute an
equivalent regular expression for Acr in exponential time, and thus get a regular
expression that is at most exponentially-larger than the DFA [13]. Finally, we
can convert the regular expression to an ldlf formula φcr with constant blow-up
[8]. By construction, t |= φ iff Mcr with input t would have outputted accept in
place of r, iff the clock condition was satisfied (Theorem 1).

In fact, if φr and φc are both ltlf formulas, then the language recognized
by the clocked dfa product Acr (i.e. the acceptor version of Mcr) is a star-free
language, and so it can be defined by some ltlf formula [8].

Theorem 6. If (φr, φc, r) is a ltlf clocked specification, then there exist an
unclocked-equivalent ltlf reward specification (φcr, r).

Proof. The crux of the proof is to show that the clocked product Acr is a counter-
free automaton [19], and therefore L(Acr) is a star-free language [25]. The claim
follows since the class of star-free regular languages is equivalent to the class
of ltlf -definable languages [8], and by the equivalence of Acr with the clocked
semantics for (φr, φc, r) as per Theorem 1. First, observe that both Ar and Ac are
counter-free automata, since they are semantically equivalent to ltlf formulas



12 De Giacomo, Favorito, and Patrizi

φr and φc, respectively. Assume by contradiction that Acr has a permutation,
i.e. for some set P = {q1, . . . , qm}, m ≥ 2, of states of Acr, there is a run q1 . . . qm
such that δ′(qi, ℓi) = qi+1, for 1 ≤ i ≤ m−1, and δ′(qm, ℓm) = q1. Now, consider
the same set of states but only considering the state components coming from
Ac, i.e. {qc1, . . . , qcm}. Note that there cannot be self-loops in this path, i.e. qci ̸= qcj
for all i ̸= j. By construction of clocked product, and in particular by definition
of δ′, it is easy to see that P is also a permutation for Ac. Since for a dfa being
permutation-free is equivalent to being counter-free [19], we have that Ac does
have a counter, and therefore we get a contradiction.

Differently from Theorem 5, Theorem 6 only tells us that an unclocked-
equivalent ltlf exists, but not how to compute it. Now we give a possible
automata-based approach for the ltlf case. Given a clocked ltlf specifica-
tion, compute Acr, which can be doubly-exponentially larger. Then, reverse all
transitions to get an nfa AR that accepts the reverse of the language of Acr,
then determinize this nfa to get an equivalent DFA A′R. Note that A′R may be
exponentially larger than AR. Now, apply Theorem 11 of [7] to transform this
DFA into an equivalent pltlf formula ψ. Finally, form the swap ψsw for the
reverse language of ψ. Then, ψsw is the ltlf formula equivalent to the pltlf
formula φ.

Such translations for ldlf (resp. ltlf ) are very impractical, as we incur in
three (resp. four) exponential blowups in the size of the original clocked specifica-
tion. It would be interesting to devise direct translations from clocked ltlf/ldlf
specifications into classical ltlf/ldlf formulas, but we leave this as future work.

Example 5. In this example, we give an idea about how an unclocked-equivalent
formula can be more verbose and counterintuitive than a clocked specification.
Consider (φr, φc, r), with φr = ◦p and φc = 3(q ∧ last). The clock formula
intuitively means “evaluate the goal formula only when q is true in the current
timestep”. The equivalent machines for these specifications are shown in Figure 4.
Intuitively, the clocked specification transitions to the next state only when
q holds. However, the second time this happens, p must hold to satisfy the
specification. It can be shown that the formula φcr = ¬q U(q∧◦(¬q U(p∧q))) is
unclocked-equivalent to the clocked reward specification. The formula includes
an U operator and a nested ◦ and U operator.

7 Conclusion

In this paper, we investigated the separation of a clock specification from the
temporal specification itself, allowing the time granularity of the temporal speci-
fication to be coarser than the actual time. Our work can be extended to consider
multi-clocked specifications, which are needed for certain applications. One nice
example is reported in [12] where temporal specifications for space missions are
formalized in a variant of ltlf at different time-granularities, called types, to rep-
resents conditions with different frequencies like second, hours, days, etc. In this
context, our work may give the basis for developing sophisticated multi-clocked
specifications where clocks are specified in ltlf/ldlf .



Regular Clocks for Temporal Task Specifications in Reinforcement Learning 13

Acknowledgements

This work has been partially supported by the ERC-ADG WhiteMech (No.
834228), the PRIN project RIPER (No. 20203FFYLK), the PNRR MUR project
FAIR (No. PE0000013), and the Sapienza project MARLeN (Multi-layer Ab-
straction for Reinforcement Learning with Non-Markovian Rewards).

References

1. Bacchus, F., Boutilier, C., Grove, A.J.: Rewarding behaviors. In: AAAI/IAAI, Vol.
2. pp. 1160–1167. AAAI Press / The MIT Press (1996)

2. Brafman, R.I., De Giacomo, G., Patrizi, F.: Ltlf/ldlf non-markovian rewards. In:
AAAI. pp. 1771–1778. AAAI Press (2018)

3. De Giacomo, G., Favorito, M., Iocchi, L., Patrizi, F.: Imitation learning over het-
erogeneous agents with restraining bolts. In: ICAPS. pp. 517–521. AAAI Press
(2020)

4. De Giacomo, G., Favorito, M., Iocchi, L., Patrizi, F., Ronca, A.: Temporal logic
monitoring rewards via transducers. In: KR. pp. 860–870 (2020)

5. De Giacomo, G., Iocchi, L., Favorito, M., Patrizi, F.: Foundations for restraining
bolts: Reinforcement learning with ltlf/ldlf restraining specifications. In: ICAPS.
pp. 128–136. AAAI Press (2019)

6. De Giacomo, G., Iocchi, L., Favorito, M., Patrizi, F.: Restraining bolts for rein-
forcement learning agents. In: AAAI. pp. 13659–13662. AAAI Press (2020)

7. De Giacomo, G., Stasio, A.D., Fuggitti, F., Rubin, S.: Pure-past linear temporal
and dynamic logic on finite traces. In: IJCAI. pp. 4959–4965. ijcai.org (2020)

8. De Giacomo, G., Vardi, M.Y.: Linear temporal logic and linear dynamic logic on
finite traces. In: IJCAI. pp. 854–860. IJCAI/AAAI (2013)

9. Eisner, C., Fisman, D., Havlicek, J., McIsaac, A., Campenhout, D.V.: The defini-
tion of a temporal clock operator. In: ICALP. Lecture Notes in Computer Science,
vol. 2719, pp. 857–870. Springer (2003)

10. Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs.
J. Comput. Syst. Sci. 18 (1979)

11. Harel, D.: Dynamic logic. In: Handbook of philosophical logic, pp. 497–604.
Springer (1984)

12. Hariharan, G., Kempa, B., Wongpiromsarn, T., Jones, P.H., Rozier, K.Y.: MLTL
multi-type (MLTLM): A logic for reasoning about signals of different types. In:
NSV/FoMLAS@CAV. Lecture Notes in Computer Science, vol. 13466, pp. 187–
204. Springer (2022)

13. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley (1979)

14. Icarte, R.T., Klassen, T.Q., Valenzano, R.A., McIlraith, S.A.: Using reward ma-
chines for high-level task specification and decomposition in reinforcement learn-
ing. In: ICML. Proceedings of Machine Learning Research, vol. 80, pp. 2112–2121.
PMLR (2018)

15. Icarte, R.T., Klassen, T.Q., Valenzano, R.A., McIlraith, S.A.: Reward ma-
chines: Exploiting reward function structure in reinforcement learning. J.
Artif. Intell. Res. 73, 173–208 (2022). https://doi.org/10.1613/JAIR.1.12440,
https://doi.org/10.1613/jair.1.12440



14 De Giacomo, Favorito, and Patrizi

16. Li, X., Vasile, C.I., Belta, C.: Reinforcement learning with temporal logic rewards.
In: IROS. pp. 3834–3839. IEEE (2017)

17. Linz, P., Rodger, S.H.: An introduction to formal languages and automata. Jones
& Bartlett Learning (2022)

18. Littman, M.L., Topcu, U., Fu, J., Jr., C.L.I., Wen, M., MacGlashan, J.:
Environment-independent task specifications via GLTL. CoRR abs/1704.04341
(2017)

19. McNaughton, R., Papert, S.A.: Counter-Free Automata (MIT research monograph
no. 65). The MIT Press (1971)

20. Mealy, G.H.: A method for synthesizing sequential circuits. The Bell System Tech-
nical Journal 34(5), 1045–1079 (1955)

21. Moore, E.F.: Gedanken-experiments on sequential machines. In: Automata
Studies.(AM-34), Volume 34, pp. 129–154. Princeton University Press (2016)

22. Pnueli, A.: The temporal logic of programs. In: FOCS. pp. 46–57. IEEE Computer
Society (1977)

23. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. Wiley Series in Probability and Statistics, Wiley (1994)

24. Rabin, M.O., Scott, D.S.: Finite automata and their decision problems. IBM J.
Res. Dev. 3(2), 114–125 (1959)

25. Schützenberger, M.P.: On finite monoids having only trivial subgroups. Inf. Con-
trol. 8(2), 190–194 (1965)

26. Sutton, R.S., Barto, A.G.: Reinforcement learning - an introduction. Adaptive
computation and machine learning, MIT Press (1998)

27. Vardi, M.Y.: The rise and fall of linear time logic. In: GandALF (2011),
http://www.cs.rice.edu/ vardi/papers/gandalf11-myv.pdf

28. Xu, Z., Topcu, U.: Transfer of temporal logic formulas in reinforcement learning.
In: IJCAI. pp. 4010–4018. ijcai.org (2019)


