
Supporting Decision-Making for City
Management through Automated Planning and

Execution

Riccardo De Benedictis[0000−0003−2344−4088],
Gloria Beraldo[0000−0001−8937−9739], Amedeo Cesta[0000−0002−0703−9122], and

Gabriella Cortellessa[0000−0002−9835−1575]

Institute of Cognitive Sciences and Technologies (ISTC) - National Research Council
of Italy (CNR) name.surname@cnr.it

Abstract. Urban intelligence is an emerging research field that aims at
investigating the use of advanced technologies and data analysis tech-
niques to enhance the efficiency, sustainability, and livability of urban
areas. One of the components of urban intelligence is decision support
which, among the possible implementations, can make use of forms of au-
tomated reasoning capable of planning the activities that must be carried
out on the territory and, at the same time, of reacting to its dynamic evo-
lution. Taking inspiration from the dual-process cognitive theories, this
paper aims at investigating the integration of automated planning and
rule-based systems as a means of supporting decision-making processes
in urban management.

Keywords: Urban Intelligence · Planning · Decision Support System.

1 Introduction

Cities are complex and dynamic environments that require continuous man-
agement to ensure their efficiency, sustainability, and livability. As urban pop-
ulations grow and become more diverse, the challenges of urban management
become increasingly complex [16, 19]. In recent years, there has been a grow-
ing interest in the use of advanced technologies and data analysis techniques
to support decision-making processes in urban management. Urban intelligence,
in particular, is an emerging dynamic and evolving field of research that seeks
to leverage advanced technologies and data analysis techniques to enhance the
efficiency, sustainability, and livability of urban areas [3].

A critical component of the urban intelligence is the support to decisions
which enables planners and policymakers to make informed decisions about
urban development and management. A Cognitive Decision Support System
(CDSS), in particular, is a type of Decision Support System (DSS) that in-
corporates cognitive theories and models of human decision-making to assist
human decision-makers in complex decision-making tasks [18]. Among the avail-
able cognitive theories, the dual processing theory [15] has been widely applied

2 R. De Benedictis et al.

in the development of CDSSs [2, 22]. This cognitive theory posits that human
cognition operates via two distinct systems or processes, often referred to as
System 1 and System 2. More specifically, System 1 refers to fast, automatic,
and intuitive thinking that relies on heuristics, mental shortcuts, and previous
experience to make decisions or judgments. This system is often associated with
our unconscious or intuitive mind and is involved in activities such as percep-
tion, pattern recognition, and emotional responses. System 2, on the other hand,
refers to slower, deliberate, and analytical thinking that relies on logic, reasoning,
and conscious effort to make decisions or judgments. System 2 is often associ-
ated with our conscious or rational mind and is involved in activities such as
problem-solving, planning, and decision-making.

Taking inspiration from the dual processing theory, this paper presents a cog-
nitive architecture, called COCO (from COmbined deduction and abduCtiOn
logic reasoner), that aims at enhancing decision-making in urban management
by combining a rule-based system to mimic the behavior of System 1, and a
timeline-based planner, extended with semantic reasoning capabilities, to mimic
the behavior of System 2. Section 2 provides background information on these
two technologies, while Section 3 describes the COCO cognitive architecture,
which combines a rule-based system and a timeline-based planner. This inte-
gration enables the planning of activities over extended time horizons, their
execution, dynamic adaptation, and adaptive responses to changes in the ur-
ban environment. To demonstrate the effectiveness of this approach, Section 4
presents a case study in the city of Matera and provides some results. Finally,
Section 5 summarizes the key findings and discusses future research directions.

2 Technical Background

This section provides some technical background on the two main components of
the proposed approach for urban intelligence: rule-based systems and timeline-
based planning. It explains how rule-based systems use a set of rules to make
decisions and how they can efficiently react to new information. It also describes
how timeline-based planning generates goal-oriented behaviors and is suitable
for managing temporal information. Understanding these two components is
crucial to understanding how they can be integrated to provide a more robust
and flexible approach to urban intelligence.

2.1 Rule-based Systems

Rule-based systems are a type of Artificial Intelligence (AI) systems that use a
set of “if-then” rules to make decisions or draw conclusions [14, 13]. These rules
typically take the form of logical statements or condition-action pairs, where
the condition is a set of input variables and the action is a set of output ac-
tions or conclusions. A knowledge base stores these rules along with some facts
which are known to be true. The introduction of new facts triggers a reasoning

Supporting City Management through Planning and Execution 3

engine which, by applying the rules to the input data or situations, selects the
appropriate actions or conclusions.

An example of a rule, for such a system, can be “IF the temperature is above
30 degrees Celsius AND the humidity is above 70%, THEN activate the sprinkler
system in the park”. In this example, the rule-based system is programmed to re-
spond to specific environmental conditions (high temperature and humidity) by
triggering an action (activating the sprinkler system) to keep lush the vegetation
that inhabits the park. By introducing a fact stating that “the temperature is
currently 35 degrees Celsius”, and a fact stating that “the humidity is currently
75%”, the previous rule is activated and the corresponding action is executed.
It is worth noticing that when an action is executed, it can generate new facts
or modify the existing ones, which can be used in subsequent reasoning and
decision-making processes.

Rule-based systems can be particularly valuable in situations where decisions
need to be made quickly and reliably. By using a set of pre-defined rules, decision-
makers can quickly assess and respond to different situations, without the need
for extensive analysis or deliberation. Furthermore, since the knowledge and rea-
soning process is based on explicitly defined rules, it is easy to understand how
a rule-based system arrives at a certain decision or output. This is particularly
important in the context of urban intelligence, where decision-makers and stake-
holders need to have a clear understanding of how and why certain decisions are
made.

2.2 Timeline-based Planning

Automated planning [12] is another branch of AI that deals with creating com-
puter programs that can generate plans, schedules, and strategies for accom-
plishing specific goals or tasks. Timeline-based planning [17], also known as
constraint-based planning, is a type of automated planning where activities are
organized over timelines and scheduled based on their temporal constraints and
dependencies. This paper extends the formalization defined in [5] to handle also
information not strictly tied to a specific time or time interval.

The basic building block of timeline-based planning, specifically, is the token
which, intuitively, is used to represent the single unit of information. Through
their introduction and their constraining during the planning process, tokens al-
low to represent the different components of the high-level plans. In its most gen-
eral form, a token is formally described by an expression like n (x0, . . . , xi)χ. In
particular, n is a predicate symbol, x0, . . . , xi are its parameters (i.e., constants,
numeric variables or object variables) and χ ∈ {f, g} is a constant representing
the class of the token (i.e., either a fact or a goal).

The token’s parameters are constituted, in general, by the variables of a
constraint network N (refer to [6] for further details) and can be used, among
other things, to represent temporal information such as the start or the end
of some tasks. The semantics of the χ constant, on the contrary, is borrowed
from Constraint Logic Programming (CLP) [1]. Specifically, while the facts are
considered inherently true, the goals must be achieved as defined by a set of

4 R. De Benedictis et al.

(a) An inconsistent state-variable time-
line. The first At token and the GoingTo
token are temporally overlapping. The
inconsistency can be removed, for exam-
ple, by introducing a e1 ≤ s2 constraint.

(b) A consistent reusable-resource time-
line. The overlap of tokens is allowed as
long as the simultaneous use of the re-
source is less than its capacity.

Fig. 1: Different timelines extracted by their associated tokens.

rules. Rules, in particular, are expressions of the form n (x0, . . . , xk)← r where
n (x0, . . . , xk) is the head of the rule and r is the body of the rule. In particular, r
represents the requirement for achieving any goal having the “form” of the head
of the rule. Such requirements can be either a token, a constraint among tokens
(possibly including the x0, . . . , xk variables), a conjunction of requirements or a
(priced) disjunction of requirements. It is worth noting the recursive definition
of requirement, which allows the definition of the body of a rule as any logical
combination of tokens and constraints. To illustrate, let’s consider a rule that
outlines the required steps for installing an optical fiber line in a specific road.

OpticalF iber (r, s, e)←

[e− s ≥ 20]∧

Trench (r1 : r, s1, e1)g∧
[s− e1 ≤ 7] ∧ [e1 ≤ s]∧
Repair (r2 : r, s2, e2)g∧
[s2 − e ≤ 8] ∧ [s2 ≥ e]

According to the previous rule, the installation process takes a minimum

of 20 time units. However, prior to commencing the installation, it is essential
to excavate a trench along the road. The time between trench excavation and
installation should not exceed 7 time units. Lastly, once the optical fiber is
installed, the trench must be filled within a maximum of 8 time units to restore
the road surface. The Trench and Repair predicates will share similar rules that
establish the necessary conditions to accomplish the goals defined in the rule’s
body.

Similarly to CLP, through the application of the rules it is hence possible to
establish and generate relationships among tokens. Compared to CLP, however,
timelines introduce an added value: tokens may be equipped with a special object
variable τ that identifies the timeline affected by the token. Different tokens with
the same value for the τ parameter, in particular, affect the same timeline and,
depending on the nature of the timeline, might interact with each other. There
can be, indeed, different types of timelines. In case of state-variable timelines
(see Figure 1a), for example, different tokens on the same state-variable cannot

Supporting City Management through Planning and Execution 5

temporally overlap. In case of reusable-resource timelines (see Figure 1b), on the
contrary, tokens represent resource usages and can, hence, overlap as long as the
concurrent uses remain below the resource’s capacity. In this context, timelines
can be viewed as a global constraint (see, for example, [6]) imposed on the tokens
applied to them.

Given the ingredients mentioned above, we can now formally introduce the
addressed planning problem. A timeline-based planning problem, specifically, is a
triple P = (O,R, r), where O is a set of typed objects, needed for instantiating
the initial domains of the constraint network variables and, consequently, the
tokens’ parameters, R is a set of rules and r is the requirement that needs to
be satisfied so that the plan achieves the desired objectives. A solution is a set
of tokens whose parameters assume values so as to guarantee the satisfaction of
all the constraints imposed by the problem’s requirement, by the application of
the rules, as well as by the global constraints imposed by the timelines.

3 Thinking, Fast and Slow, Logically: COCO

Fig. 2: The COCO three-layer architecture.

In a rule-based system, the infer-
ence engine typically applies a set
of production rules to a knowl-
edge base in order to deduce new
information or actions. The rules
are usually written in a forward-
chaining form, meaning that they
are triggered when certain condi-
tions (i.e., antecedents) are met,
and then generate new informa-
tion or actions (i.e., consequents).
The search limited to match the
rule conditions, enhanced with in-
dexing techniques [8], combined
with the almost total absence
of backtracking, makes these ap-
proaches particularly efficient in
reacting to new information. In timeline-based planning, on the contrary, the sys-
tem works by searching backwards (abduction), from goals, to find a sequence of
actions that can achieve that goals. This process involves constructing a plan by
recursively applying rules and constraints, searching for valid solutions. When
constraints do not propagate, the system backtracks, making the search for a
solution more onerous from a complexity point of view. These approache are,
nonetheless, specifically designed to handle temporal information and are more
suited for generating goal-oriented behaviors that need to be executed within a
certain time frame.

The proposed approach, depicted in Figure 2, aims to exploit the high-
reactivity and explainability of the rule-based system, together with the powerful

6 R. De Benedictis et al.

planning capabilities of the timeline-based planner, to enable effective decision-
making in dynamic and complex urban environments. Taking inspiration from
classical robotics architectures [9], specifically, the COmbined deduction and
abduCtiOn logic reasoner (COCO) consists of a deliberative tier responsible,
through a timeline-based planner, for the generation, the execution and the dy-
namic adaptation of the plans; a sequencing tier which, through the CLIPS1

rule-based system, executes a sequence of actions according to the current state
of the world; and a sensing and a controlling tier, which respectively interprets
data produced by sensors and translates the sequencer’s actions into lower level
commands for the actuators. The System 1 side is covered by the sequencing tier,
which quickly recognizes and responds to familiar patterns and situations, gen-
erating abstractions from sensory data and low-level commands for actuators,
functioning like automatic, intuitive decision-making. In contrast, the System
2 side is covered by the deliberative tier, which uses semantic and causal rea-
soning, and logical and arithmetic approaches to generate and adapt high-level
plans based on dynamic environmental information.

The COCO state, according to which actions are selected from the sequencer
tier, is represented through a set of facts in the rule-based system. Adding, mod-
ifying or deleting facts entails the execution of the actions through the activation
of the rules. The facts, representing the state, are described by a combination of
two distinct sets:

– the ss set, containing facts generated by the sensing tier through a REST
API, characterizes the consequences of the interpretation of sensory data,
representing, for example, temperature, humidity, air quality, flows of vehi-
cles on roads, etc.;

– the sd set, containing facts generated by the deliberative tier, representing
the high-level commands produced as a result of the execution of the planned
tasks.

Similarly, the actions executed by the sequencer tier can be of two distinct types:

– the ac actions, towards the controllers, responsible for various tasks, such as
directly performing actions (e.g., activating a sprinkler) or indirectly influ-
encing the city (e.g., communicating with municipal technicians or decision-
makers);

– the ad actions, towards the deliberative tier, responsible, for example, for
the creation of the planning problems and for the execution and dynamic
adaptation of the generated plans.

Notably, the sequencing tier, using the π (s) policy, can act on the environ-
ment through ac actions and introspectively on higher-level reasoning through
ad actions. The higher-level tasks (a.k.a. intrinsic motivations [21]) generated
by the deliberative tier during plan execution are only one factor influencing

1 https://clipsrules.net

Supporting City Management through Planning and Execution 7

User-defined function Description
new_solver(purpose,
files)

Creates a new solver for the given purpose and starts
solving the planning problem contained in the given files.

start_execution(solver_id)
Starts the execution of the plan generated by the solver
with the given ID.

delay_task(task_id,
delay_time)

Delays the start of the task with the given ID by the
delay_time amount of time.

extend_task(task_id,
extend_time)

Extends the duration of the task with the given ID by
the extend_time amount of time.

failure(task_ids)

Notifies the deliberative tier that the execution of the
given set of tasks is failed. The executing plan should be
adapted considering that the consequences of the failed
tasks will no more be available.

adapt(solver_id, files)
Adapts the given plan by introducing new requirements
(e.g., new goals).

delete_solver(solver_id)
Deletes the given solver and, if present, the correspond-
ing plan.

Table 1: User-defined functions for interacting with the deliberative tier. These
functions can be invoked, if necessary, by the sequencing tier.

the sequencing tier’s actions. These tasks are not mandatory for the system’s
autonomy but serve as suggestions for the agent on what to do.

The sequencing tier of the COCO architecture is equipped with several ac-
tions that enable it to formulate the planning problem, execute and modify
the solutions generated by the planner in a dynamic manner. In particular, the
CLIPS system has been enhanced to support user-defined functions, summarized
in Table 1, within rule-based system rules. One of these functions is new_solver,
which creates a new solver from a string indicating the solver’s purpose and a set
of files comprising the planning model definition and the problem instance. For
timeline-based planning, these files contain the rule definitions and the initial
problem requirement. Upon invocation, this function generates a new solver
fact (refer to Table 2 for the facts related to planning that have been considered
into the knowledge base) in the knowledge base, which includes the solver’s ID,
purpose, and state (initially in the reasoning state until a solution is found).
Notably, the sequencing tier remains active during the planning process, react-
ing to external inputs and taking into account the planner’s reasoning status as
necessary.

After the planning process is completed, the solver fact is updated to in-
dicate that the planner is now in an idle state. At this point, a rule on the
sequencing tier, that has a premise with a solver fact having the same purpose
of the planner and the idle state, is used to trigger the execution of the plan
through the user-defined function start_execution. The presence of this rule
enables the option to postpone plan execution until additional conditions arise,
if deemed necessary. The planner then modifies the solver fact by putting it in
the executing state and starts executing the plan by sending tasks to the se-

8 R. De Benedictis et al.

Fact Description

solver(id, purpose,
state)

Declares the presence of a solver with a particular ID,
purpose, and status. The status can be either reasoning,
idle, executing, adapting, finished or failed.

task(solver_id, id, type,
pars, vals)

Declares that a task is currently executing. The
solver_id and id parameters indicate, respectively, the
ID of the solver and the ID of the task. The type param-
eter indicates the type of the task (i.e., the n predicate
symbol of the corresponding token). The pars and vals
parameters indicate, respectively, the parameter names
of the task and their values (i.e., the x0, . . . , xi names
and values of the corresponding token).

Table 2: Facts asserted and modified during the execution of the plans. The
rule-based system reacts to the presence of these facts as to the presence of facts
asserted as a consequence of changes in the environment.

quencing tier in a timely manner. Aside from executing the plan, the sequencing
tier can also perform other actions to modify the running plan. For instance, the
delay_task and extend_task functions can request the delay of the start or
end time of a task, respectively. The failure function can remove an activity
from the plan, considering its effects on the execution of future activities. Lastly,
the adapt function can introduce new requirements or goals within the current
plan. As these adaptations can be quite expensive, effective strategies have been
adopted to manage them [4, 11].

Fig. 3: State-transition diagram illustrating
the potential states of the solvers.

Reasoning on delays and fail-
ures in the sequencing tier results
in the modification of the solver
fact, which is put in the adapting
state. Once the adaptation is com-
plete, the previous state (idle or
executing) is restored. In case
the planner ends up in an incon-
sistent state, such as due to exces-
sive delays or too many failures
that prevent the achievement of
the desired goals, the solver fact is updated to indicate a failed state of
the planner. Further actions, such as creating a new solver with a new prob-
lem, are delegated to the rule-based system. When the execution completes all
planned tasks achieving the desired goals, the state of the solver fact becomes
finished. It is important to note that the solver fact is a crucial element in
the communication and coordination between the planner and the sequencing
tier, ensuring effective execution of the plan while managing exceptional cases.
Figure 3 illustrates the potential states and transitions of the solvers.

During task execution, effective communication with the sequencing tier is
crucial. Task execution in the COCO system requires confirmation from the

Supporting City Management through Planning and Execution 9

Function Description

starting(solver_id, id,
type, pars, vals)

Queries the sequencing tier to determine if the task with
the given id in the plan managed by the solver_id solver,
characterized by the type type and with parameters pars
taking on values vals, can be initiated. Returns a Boolean
value (by default, TRUE) indicating whether the task can
start. If not, an optional numerical value may be provided
to indicate the estimated delay for starting the activity.

start(solver_id, id,
type, pars, vals)

Informs the sequencing tier that the task, identified by the
provided parameters, has just begun. By default, this action
asserts a corresponding task fact in the knowledge base.

ending(solver_id, id)

Queries the sequencing tier to determine if the task with the
given id in the plan managed by the solver_id solver can
be terminated. Returns a Boolean value (by default, TRUE)
indicating whether the task can finish. If not, an optional
numerical value may be provided to indicate the estimated
delay for ending the activity.

end(solver_id, id)

Informs the sequencing tier that the task with the given
id in the plan managed by the solver_id solver has just
finished. By default, this action retracts the corresponding
task fact from the knowledge base.

Table 3: Functions called during the execution of plans in the COCO system.

sequencing tier, which is aware of dynamic environmental updates. Communi-
cation is maintained by adding relevant facts to the knowledge base and in-
voking specific custom functions. These functions are detailed in Table 3. The
starting function checks if a task can begin, returning a Boolean value and an
optional delay estimate if initiation is not possible. The start function informs
the sequencing tier of a task’s start, updating the knowledge base. Similarly, the
ending function assesses if a task can end, and the end function signals task com-
pletion, updating the knowledge base accordingly. These functions ensure clear
coordination between the deliberative and sequencing levels within the COCO
system.

4 The Case Study of Matera

Matera (a photo of the city is visible within Figure 2) is a beautiful city in south-
ern Italy known for its ancient town, the “Sassi di Matera”, a UNESCO World
Heritage Site since 1993. In recent years, Matera has undergone a significant
transformation, rebranding itself from a poverty-stricken city in the 1950s to a
modern, thriving hub today, center for innovation and cultural development. The
Matera 2019 program, as the European Capital of Culture, included numerous
initiatives to promote the city’s history, art, and cultural heritage. For the oc-
casion, Matera has been selected to host the “House of Emerging Technologies”
project, funded by the Italian Ministry of Economic Development. The project,

10 R. De Benedictis et al.

in particular, has implemented several technological solutions to enhance the
city’s urban management and improve the quality of life of citizens and visitors.
One of these solutions is a data platform that collects information from sensors
placed around the city, including data from citizen notifications, which can be
used for analysis and decision-making. Additionally, a 3D model of the city, an-
notated to achieve a semantic 3D representation, provides valuable insights for
urban management [20]. The project also employs Dynamic Mode Decomposi-
tion to analyze pedestrian and vehicle traffic patterns and predict future states
[7]. Path planning algorithms have also been developed to help visitors optimize
their visits, finding the optimal route based on user preferences such as shortest
paths, minimum slopes, or maximum shade [10].

Fig. 4: The COCO web app contains a dashboard for real-time monitoring and
for visualizing statistics. Plans can be visualized and edited in order to perform
what-if analysis.

The COCO system2 is one element in this ensemble, aiming to coordinate
the operations of the various components, plan necessary activities, and manage
part of the information received from sensors. While planning urban interven-
tions, decision-makers and municipal technicians receive real-time suggestions on
activities to undertake, and citizens receive pertinent updates on the status of the
city (e.g., public events). Both decision-makers and municipal technicians can in-
teract with COCO and, if needed, incrementally adjust the generated solutions
by introducing additional constraints, thereby conducting a what-if analysis. For
instance, Figure 4 displays the user-accessible web-based dashboard, presenting
information about the city’s state and statistics derived from sensors’ history.
The figure also includes a timeline representation of an executing plan, illustrat-
ing the impact of extending a task due to a user-initiated what-if analysis.

The rule-based system within COCO maintains a comprehensive dataset re-
lated to the city’s state. This includes details about the managed sensor types,
the specific sensors strategically positioned throughout the city, information

2 https://github.com/ratioSolver/COCO.

Supporting City Management through Planning and Execution 11

about roads (e.g., known condition, length, capacity, slope, etc.), details about
buildings (e.g., known condition, energy efficiency, etc.), road traffic and atmo-
spheric simulations, predicted future states (to react to problems before they
occur), a registry of users, who have system access, with their associated skills,
and so on. Data generated by sensors reaches COCO via a REST API and
contributes to the assertion of additional facts, which in turn can trigger the
activation of rules and subsequent execution of specific actions. Similarly, the
rule-based system has been expanded with user-defined functions to facilitate
both direct actions (e.g., activating a sprinkler) and indirect actions (e.g., com-
municating with municipal technicians or decision-makers). These actions aim
to influence the city and may involve suggesting decisions to decision-makers.
Suppose, for example, that an air quality sensor sends a pm10 value equal to
55 µg/mc. This information results in adding a (sensor_data aq0 04042023
55) fact, in which (aq0) is the ID of the air quality sensor, 04042023 is the
timestamp of the datum and 55 is the pm10 perceived amount. Since the daily
limit threshold, in Italy, is 50 µg/mc, the following rule triggers the sending of
a warning message to the person in charge of managing the situation.

(defrule pm10
(sensor_data (id ?s_id) (timestamp ?t) (data ?pm10))
(sensor (id ?s_id) (location ?lat ?lng) (type_id ?type))
(sensor_type (id ?type) (name "air_quality")) (test (>= ?pm10 50))
(user (id ?u_id)) (skill (id ?u_id) (name "air_monitoring")) =>
(send_message ?u_id (str-cat "The air quality sensor has perceived a pm10
value of " ?pm10 " which is above the recomended threshold of 50 µg/mc")))

Fig. 5: Planning times based on the number of
maintenance goals and the number of municipal
technicians.

Another scenario involves
managing participatory data
through a web interface where
citizens can report issues con-
cerning buildings, roads, and
other public amenities. When
a certain threshold of reports
is reached, the rule-based sys-
tem activates the delibera-
tive tier by setting a goal for
maintaining the reported as-
set. In modeling the prob-
lem, the monitoring of main-
tenance interventions is en-
trusted to a team of municipal technicians, who are also assigned the task of
preparing the documents for the related calls for tenders, aimed at assigning the
activities to the companies which, won tenders, will be awarded the contract
for the effective implementation of maintenance operations. Each technician has
specific skills, limiting their involvement to certain types of maintenance tasks
(e.g., road and public green maintenance but not public building maintenance).
Additionally, to prevent overloading, no technician can handle more than two

12 R. De Benedictis et al.

activities simultaneously; for instance, in case of three concurrent activities, they
can be assigned to two different technicians or scheduled to overlap in a way that
respects the limit of two concurrent activities per technician.

The ongoing process of defining rules encompasses both the rules-based sys-
tem and the deliberative tier. Specifically, the deliberative tier addresses issues
related to the maintenance of public goods, urban planning interventions, and
the intricacies of procurement procedures, which must navigate the complexi-
ties of Italian bureaucracy. On the other hand, rules for the rule-based system
primarily consider scenarios where predefined thresholds are exceeded. Employ-
ing machine learning techniques, particularly decision tree learning, we leverage
data obtained from road simulations to formulate rules for predicting traffic jams
on specific roads, based on the monitoring of a selected subset equipped with
sensors. To assess the effectiveness of COCO, nonetheless, our focus turned
to evaluating the efficiency of the reasoners’ resolution processes on a set of
benchmark problems of increasing size. This approach allowed us to estimate
resolution times as the size of the addressed problems grew. Given that decision-
makers might interact with COCO to perform what-if analyses during urban
intervention planning, the system’s response must be swift. Figure 5 illustrates
the resolution times varying with the number of maintainance goals and on the
number of municipal technicians in the team. Notably, despite the exponential
complexity3 of the problem, resolution times consistently remain within a few
seconds, even with higher numbers of activities. It is worth to note how, the
planner has greater freedom in assigning activities, resolution times decrease
slightly with more technicians.

5 Conclusions

This paper introduces the COCO system, integrating a rule-based system with
automated planners to support decision-making in urban management. Rule-
based systems react efficiently to environmental changes, while automated plan-
ning provides a more deliberative approach to generating tasks that achieve de-
sired goals. By combining these approaches, urban managers gain a comprehen-
sive tool for managing various aspects of urban life. Pattern-matching techniques
enhance the efficiency of rule-based systems in reactive tasks, while the delib-
erative component, though more computationally intensive, remains feasible for
scenario generation, plan adaptation, and what-if analyses.

Defining rules is a critical and often complex process shared by both systems.
In future work, we aim to explore machine learning to streamline and, where
possible, automate rule definition. Additionally, changes in municipal adminis-
trations have delayed tasks like procuring and installing sensors. In the coming
months, we plan to conduct experiments with real users, including municipal
administrators and citizens. We have also begun applying these techniques in
the cities of Catania and Milano.
3 The planner must sequence activities while respecting temporal and resource con-

straints, thus solving an NP-Hard problem in this case.

Supporting City Management through Planning and Execution 13

References

1. Apt, K.R., Wallace, M.G.: Constraint Logic Programming Using ECLiPSe. Cam-
bridge University Press, New York, NY, USA (2007)

2. Arnott, D., Gao, S.: Behavioral economics for decision sup-
port systems researchers. Decision Support Systems 122, 113063
(2019). https://doi.org/https://doi.org/10.1016/j.dss.2019.05.003,
https://www.sciencedirect.com/science/article/pii/S016792361930079X

3. Castelli, G., Cesta, A., Diez, M., Padula, M., Ravazzani, P., Rinaldi, G., Savazzi,
S., Spagnuolo, M., Strambini, L., Tognola, G., Campana, E.F.: Urban intelli-
gence: a modular, fully integrated, and evolving model for cities digital twin-
ning. In: 2019 IEEE 16th International Conference on Smart Cities: Improving
Quality of Life Using ICT & IoT and AI (HONET-ICT). pp. 033–037 (2019).
https://doi.org/10.1109/HONET.2019.8907962

4. De Benedictis, R., Beraldo, G., Cesta, A., Cortellessa, G.: Incremental timeline-
based planning for efficient plan execution and adaptation. In: Dovier, A., Monta-
nari, A., Orlandini, A. (eds.) AIxIA 2022 – Advances in Artificial Intelligence. pp.
225–240. Springer International Publishing, Cham (2023)

5. De Benedictis, R., Cesta, A.: Lifted Heuristics for Timeline-based Planning. In:
ECAI-2020, 24th European Conference on Artificial Intelligence. pp. 2330–2337.
Santiago de Compostela, Spain (August 2020)

6. Dechter, R.: Constraint Processing. Elsevier Morgan Kaufmann (2003)
7. Diez, M., Serani, A., Campana, E.F., Stern, F.: Data-driven modelling of ship

maneuvers in waves via dynamic mode decomposition (2021)
8. Forgy, C.L.: Rete: A fast algorithm for the many pattern/many

object pattern match problem. Artificial Intelligence 19(1), 17–37
(1982). https://doi.org/https://doi.org/10.1016/0004-3702(82)90020-0,
https://www.sciencedirect.com/science/article/pii/0004370282900200

9. Gat, E.: On Three-Layer Architectures. In: Artificial Intelligence and Mobile
Robots. pp. 195–210. AAAI Press (1997)

10. Gentile, C., Stecca, G., Mancini, S., Suanno, M.: An application of the orienteer-
ing problem with time windows for scheduling visits during social events. In: Joint
EURO/ALIO International Conference 2018 on Applied Combinatorial Optimiza-
tion, Bologna (Italy), June 25 - 27, 2018 (2018)

11. Gerevini, A., Serina, I.: Fast plan adaptation through planning graphs: Local and
systematic search techniques. In: Chien, S.A., Kambhampati, S., Knoblock, C.A.
(eds.) Proceedings of the Fifth International Conference on Artificial Intelligence
Planning Systems, Breckenridge, CO, USA, April 14-17, 2000. pp. 112–121. AAAI
(2000), http://www.aaai.org/Library/AIPS/2000/aips00-012.php

12. Ghallab, M., Nau, D., Traverso, P.: Automated Planning: Theory and Practice.
Morgan Kaufmann Publishers Inc. (2004)

13. Grosan, C., Abraham, A.: Rule-Based Expert Systems, pp. 149–185. Springer
Berlin Heidelberg, Berlin, Heidelberg (2011). https://doi.org/10.1007/978-3-642-
21004-4_7, https://doi.org/10.1007/978-3-642-21004-4_7

14. Hopgood, A.A.: Intelligent Systems for Engineers and Scientists, 3rd Edition (2016)
15. Kahneman, D.: Thinking, Fast and Slow. Farrar, Straus and Giroux, New York

(2011)
16. Moreno-Monroy, A.I., Schiavina, M., Veneri, P.: Metropolitan areas in the

world. delineation and population trends. Journal of Urban Economics 125,
103242 (2021). https://doi.org/https://doi.org/10.1016/j.jue.2020.103242,

14 R. De Benedictis et al.

https://www.sciencedirect.com/science/article/pii/S0094119020300139, delin-
eation of Urban Areas

17. Muscettola, N.: HSTS: Integrating Planning and Scheduling. In: Zweben, M. and
Fox, M.S. (ed.) Intelligent Scheduling, pp. 169–212. Morgan Kauffmann (1994)

18. Niu, L., Lu, J., Zhang, G.: Cognition-driven decision support for business in-
telligence: models, techniques, systems and applications / Li Niu, Jie Lu, and
Guangquan Zhang. Springer Verlag Berlin (2009)

19. OECD, Commission, E.: Cities in the World (2020).
https://doi.org/https://doi.org/https://doi.org/10.1787/d0efcbda-en,
https://www.oecd-ilibrary.org/content/publication/d0efcbda-en

20. Scalas, A., Cabiddu, D., Mortara, M., Spagnuolo, M.: Potential of the geomet-
ric layer in urban digital twins. ISPRS International Journal of Geo-Information
11(6) (2022). https://doi.org/10.3390/ijgi11060343, https://www.mdpi.com/2220-
9964/11/6/343

21. Schmidhuber, J.: Formal theory of creativity, fun, and intrinsic motivation
(1990–2010). IEEE Transactions on Autonomous Mental Development 2(3), 230–
247 (2010). https://doi.org/10.1109/TAMD.2010.2056368

22. Tsalatsanis, A., Hozo, I., Kumar, A., Djulbegovic, B.: Dual processing model for
medical decision-making: An extension to diagnostic testing. PLoS One 10(8)
(2015). https://doi.org/https://doi.org/10.1371/journal.pone.0134800

