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Abstract. In recent years, the field of autonomous vehicles and driver-
less technology has seen remarkable advancements, driven by contri-
butions from mainstream automotive manufacturers and open-source
projects. This research aims to develop a pipeline for road scene under-
standing through semantic segmentation. The proposed pipeline utilises
a multi-modal segmentation model, incorporating greyscale images and
point cloud data from Xenolidar, specifically designed to capture the
structural priors of highway road scenes. The fusion of input modalities
and the design of an encoder-decoder architecture with a novel atten-
tion scheme called HaWANet is introduced, which focuses on the height
and width contextual information to improve the accuracy of road seg-
mentation, are the primary aspects explored for the proposed model.
The output of the encoder is a two-dimensional point cloud, which effec-
tively represents the road’s planar nature, and is crucial for improving
the accuracy of road segmentation, particularly in edge cases, address-
ing current challenges in autonomous driving research. This research,
aimed at addressing the segmentation problem for multimodal sensor
data, has presented significant performance improvement over single-
modal approaches.

Keywords: Road Scene Understanding · Multimodal Segmentation ·
Deep Learning · Attention.
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1 Introduction

Recent years have seen significant advances in the field of autonomous vehicles
and driverless technology, with mainstream automotive manufacturers and open-
source projects contributing high-quality research to solve autonomous driving
problems. This progress can be attributed to the availability of open-source
datasets and improvements in computational capabilities. This research aims to
develop a pipeline for road scene understanding through semantic segmentation.

Despite significant improvements, fully autonomous driving remains a chal-
lenging goal due to its safety-critical nature. Current research focuses on address-
ing edge cases and improving system robustness. The choice of sensors in the
perception stack is crucial in this context. LIDAR (Light Detection and Rang-
ing) is widely used for long-range obstacle detection and is a key component
of autonomous vehicle perception systems. It functions by emitting light pulses
and measuring the time it takes for them to return after bouncing off objects,
generating extensive data.

The challenge lies in extracting usable information from these data to per-
ceive the vehicle’s surroundings. Advances in LiDAR technology now provide
high-quality 3D information. Combining 3D LiDAR data with the rich seman-
tic information from camera images can enhance perception algorithms. Such
data fusion strategies leverage the strengths of each sensor modality. For ex-
ample, LiDAR performs well in low-light conditions, whereas cameras provide
semantically rich data.

The efficient fusion of sensor modalities and the design of neural networks
to solve various computer vision problems are crucial to the advancement of
autonomous driving. This research explores data fusion between multimodal
sensor data from a solid-state LiDAR with a proposed segmentation model. The
aim is to contribute to improving robustness and accuracy, particularly in edge
cases, by addressing current challenges in autonomous driving research.

1.1 Background

Perception systems form a crucial component of the autonomous driving stack.
Over the past decade, these systems have significantly evolved, integrating high-
accuracy sensor systems to process data about the vehicle’s surroundings. Mod-
ern driverless cars use a sensor stack that includes cameras, LiDARs (light de-
tection and range), radars (radio detection and range), and ultrasonic sensors.
Real-time processing of data from these multimodal sensors presents a major
challenge in autonomous driving. This research focuses on LiDARs, whose ca-
pabilities in low-light and nighttime conditions are invaluable, despite ongoing
debates about their necessity in autonomous vehicles.

LiDARs in Automotive Perception Systems LiDAR sensors have become
a standard component in the perception stack for autonomous vehicles. Although
there is a debate about their necessity, LiDARs provide efficient and accurate
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3D perception with minimal post-processing. They offer precise 360-degree vi-
sion and faster depth sensing compared to other methods such as stereo vision.
The requirements for LiDAR sensors in safety-critical applications such as au-
tonomous vehicles include long range, real-time response, high spatial resolution,
and tolerance to sunlight [8].

LiDAR technology works on the Time of Flight (ToF) principle, which mea-
sures the time between sending and receiving reflection of a light beam [1].
LiDARs generate point clouds by repeating these point measurements, and they
are classified into two main types: Spinning LiDARs and Solid-state LiDARs.

Spinning LiDARs feature a rotating element that scans light around it and
a receiver element that calculates the ToF to generate point clouds. These were
the first 360-degree scanning devices used in the autonomous vehicle industry.

Solid-state LiDARs, a term from the semiconductor industry, use static scan-
ners and receivers. Notable types include Microelectromechanical Systems (MEMS)
based LiDARs, which use tiny mirrors to control the direction of the laser beam
by adjusting the tilt angle with a stimulus voltage [15]. Another type is Vertical-
Cavity Surface-Emitting Lasers (VCSEL) scanners, known for their precision
and efficiency [2,16]. The LiDAR scanner used in this research employs VCSEL
technology [17].

HANet: Attention for Semantic Segmentation Incorporating the intrinsic
nature of different scenes into computer vision tasks is an area with relatively
little research. Specifically, for road scene understanding, many inherent pre-
sets can enhance algorithm design. Height-driven Attention Networks (HANet),
proposed by Sungha Choi et al. [3], exemplifies this approach.

HANet capitalises on the structural priors of road scenes captured by front-
mounted cameras in vehicles. This approach splits road scene images into three
height-based regions and evaluates the class probability distribution in these
regions compared to the whole image. The study found lower entropy in the
height-based regions, confirming the potential to integrate these structural priors
into semantic segmentation frameworks. HANet adds a height-driven attention
mechanism to the segmentation framework, leveraging these spatial distributions
to improve scene understanding.

Deep Data Fusion When multimodal data is available, as in this research,
a fusion strategy can be used to potentially improve the performance of the
semantic segmentation problem. In general, data fusion can be categorised as:
early fusion, late fusion, and hybrid fusion [19] - presented in Fig. 1

Early fusion combines different modalities before feeding them into feature ex-
traction models. Camille Couprie et al.[5] introduced early fusion in 2013 for
indoor scene segmentation by combining RGB and depth information using a
Laplacian pyramid. Another notable method, FuseNet [6], fuses RGB and depth
modalities at each feature extraction level within two encoder networks.
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Fig. 1. Deep Multimodal fusion strategies

Late fusion involves feeding each modality into separate encoder models and
combining the extracted features at a later stage. Gupta et al.[4] employed late
fusion in 2014 by extracting RGB and depth features with two encoders and
combining them using an SVM classifier. Valada et al.[13] later summed fea-
tures from different modalities and fed this joint representation into a series of
convolution layers.

Hybrid Fusion combines early and late fusion techniques to enhance segmen-
tation quality. Valada et al.[12] developed a Self-Supervised Model Adaptation
(SSMA) module, which adapts semantically mature feature representations at
different scales. The SSMA blocks successfully exploit modal-specific features
and enhance discriminative factors in the feature map.

2 Methodology

2.1 Dataset

This research uses data from Xenolidar, consisting of two primary modalities:
a 2D greyscale image and a 3D point cloud. The initial phase of this research
involved data preparation and annotation, which is recognised as the most time-
consuming and costly aspect of machine learning projects. This research utilised
advanced deep learning methods to minimise the required time and effort.

Data Collection The data collection setup comprises Xenolidar housings de-
veloped by Xenomatix and an RGB camera that captures the same scene. Data
from both sensors are time-stamped. The RGB camera is included to generate
accurate predictions from existing model architectures trained on RGB images.
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Generating Annotations Initial attempts to generate rough segmentation
masks involved inputting Xenolidar greyscale images into a pretrained segmen-
tation network. Two methods were tested: stacking the greyscale image to create
three channels and modifying the network for single-channel input. Both meth-
ods were unsuccessful due to the unique nature of Xenolidar images, leading to
an alternative approach.
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Fig. 2. Designed data preparation scheme where the affine transformation between
RGB images and greyscale images from two different sensors is calculated first and
then used to transfer segmentation masks

The data flow of the annotation scheme, illustrated in Figure 2, starts with
RGB images processed by the DeepLabV3 model, pretrained on the Cityscapes
dataset. The semantic segmentation masks obtained for RGB images are trans-
ferred to the Xenolidar image space using affine transformations. For this, three
corresponding points are selected from a sample RGB and greyscale Xenolidar
image. Although manual selection is possible, automation using SIFT feature
correspondence is preferred for accuracy. From the list of corresponding points,
three distant points are chosen to calculate the affine transformation matrix,
which is used to transform RGB images into the Xenolidar image space. This
process is repeated multiple times to refine the transformation matrix.

The same affine transformation matrix is applied to convert segmentation
masks of RGB images into masks for Xenolidar greyscale images, creating a
rough set of segmentation masks. These masks are manually corrected using
a modified Labelme tool [14], which accepts Xenolidar greyscale images and
displays the corresponding RGB images and point-cloud overlays. Nine classes
from the Cityscapes dataset were selected for annotation: car, truck, person,
road, sidewalk, building, sky, vegetation, and bicycle + motorcycle.

The dataset, consisting of 12,000 frames (8,000 recorded in Belgium and 4,000
in Japan), required over four months of manual correction despite automation
to achieve the desired quality.
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Fig. 3. Sample result from the data annotation pipeline

2.2 Semantic Segmentation Network

A semantic segmentation model was developed during this research that pro-
cesses multi-modal input, incorporating greyscale images and point cloud data
from Xenolidar to generate semantic predictions. The primary aspects explored
for the semantic segmentation model include the fusion of input modalities and
the design of an encoder that efficiently extracts features from road scenes. The
preprocessing and semiautomatic annotation methodology developed is detailed
in the previous section. This section provides an in-depth description of the
developed segmentation network.

The segmentation network architecture is inspired by UNet [9]. To accommo-
date multi-modal inputs, several modifications were necessary. Various encoder
networks were experimented with in this research to determine the most ef-
fective models for this use case. The encoders selected for the experimentation
were ResNet [7] and EfficientNet [11]. The methods for data fusion and feature
extractor design are explained in detail in this section.

Fusion of 2D and 3D Modalities The main aspect addressed is the fusion
of the 2D image modality and the 3D point clouds. A late fusion strategy was
adopted, where features are extracted from both greyscale images and point
clouds from Xenolidar, and then fused in the feature extraction backbone.

Before fusion, the point clouds are converted into an intermediate 2D repre-
sentation by creating a 2D depth image. This process involves creating an empty
array of the same size as the greyscale image and filling it with the depth values
from the point cloud. The position of each point in the 2D array is determined
by the position of the reflected laser spots on the CMOS sensor, as calibrated by
the manufacturer and encoded with the data. Each point in the point cloud in-
cludes 2D coordinates, facilitating the conversion to a 2D array. Figure xx shows
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the 2D depth image generated from the corresponding 3D point cloud. This 2D
depth image is then used in the data fusion with the greyscale image.

The generated 2D depth image is fed into a small network with a few convolu-
tional blocks. The resulting feature vector is concatenated with features from the
greyscale images at a later stage in the main feature extraction backbone. The
depth feature extractor consists of three convolutional layers followed by average
pooling layers, converting a depth image of shape 1×256×768 into 64×64×192.

Proposed Height and Width Attention Block To incorporate the intrinsic
features of driving datasets, a custom attention block inspired by HANet [3] was
designed and developed. HANet explores the class distribution in the vertical
pixel scale, whereas this research proposes a height- and width-driven attention
mechanism.

Since the dataset predominantly features highway scenes, a unique class dis-
tribution across width and height is present. Vertically, lower sections are ex-
pected to have more pixels labelled as roads, while upper sections contain more
pixels labelled as sky. Horizontally, the road class is more likely to appear in the
middle section, with buildings and vegetation more prominent on the left and
right sections.

These observations motivated the design of an additional attention block,
named Height- and Width-driven Attention Network (HaWANet). This block
is integrated into the later stages of feature extraction and earlier stages of
the decoder. HaWANet processes the feature map and, based on height and
width-wise contextual information, identifies important features or classes within
horizontal and vertical sections, combining this information with features from
the main encoder.

The architecture of HaWANet is shown in Figure 4. The input to this at-
tention block is the feature map of the main segmentation network. HaWANet
consists of two almost identical parts: the upper section processes height-wise in-
formation, while the lower section processes width-wise information. The height
attention Ah is calculated in the upper section, and the width attention Aw in
the lower section. Then both attention maps are multiplied by the main feature
map.

The details of each subsection are as follows:

– Height-wise pooling (a-h): Average pooling is applied to the feature map
in the width direction to generate a Cl ×Hl × 1 matrix.

– Downsampling (b-h): The matrix is downsampled to size Cl ×H− × 1.
– Attention map computation (c-h): Three convolutional layers generate

the attention map from the width-wise pooled and downsampled feature
map.

– Upsampling (d-h): The attention map is upsampled to match the dimen-
sions of the feature map.

– Positional encoding (e-h): A sinusoidal positional encoding, as used in
HANet, is added to the feature map.
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Fig. 4. Height and Width aware Attention Network (HaWANet Architecture)

– Width-wise pooling (a-w): Average pooling is applied to the feature map
in the height direction to generate a Cl ×Wl × 1 matrix.

– Downsampling (b-w): The matrix is downsampled to size Cl ×W− × 1.
– Attention map computation (c-w): Three convolutional layers generate

the attention map from the height-wise pooled and downsampled feature
map.

– Upsampling (d-w): The attention map is upsampled to match the dimen-
sions of the feature map.

– Positional encoding (e-w): A sinusoidal positional encoding is added to
the feature map.

HaWANet is an add-on module that can be inserted between different feature
extraction blocks in the architecture. The entire encoder-decoder architecture
that incorporates data fusion and HaWANet is explained in a subsequent section.

Encoder - Decoder Segmentation Network This research attempts to reuse
the concept of UNet [9] to develop a segmentation model. For the encoder part,
a ResNet-based feature extractor is used. Performance of multiple variants of
ResNet [7] including ResNet-18, ResNet-50, ResNet-101, and EfficientNet [11]
was tested. The main modifications made to the encoder part from the standard
ResNet are the data fusion scheme and the custom attention block, HaWANet.
The model architecture developed is depicted in Figure 5.

Data fusion occurs in the third ResNet block, where features from the greyscale
images and the depth image are concatenated. The concatenated feature matrix
then progresses through the subsequent stages of feature extraction.

The HaWANet block is added in five positions of the model architecture,
specifically in the later stages of feature extraction. This strategy is based on
the understanding that the feature matrix is more concise in these stages and
can be effectively utilised in the attention layers of HaWANet.

The model follows an encoder-decoder architecture. At intermediate stages,
the feature matrix from the encoder section is concatenated with the correspond-
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Fig. 5. Encoder - Decoder Network architecture incorporating data fusion and
HaWANet attention module

ing sections of the decoder section, inspired by the UNet architecture. Finally,
the decoder section outputs the segmentation masks for each class.

The model was trained with approximately 12,000 greyscale images and cor-
responding depth images for 200 epochs. The loss functions used were a combi-
nation of cross-entropy loss and dice loss.

2.3 Model Training

Loss Functions The proposed network architecture was trained using cross
entropy [18] and dice loss [10] functions. Cross-entropy loss was implemented
to measure the difference between the probability distributions of the predic-
tions and the ground-truth, while the Dice loss was employed to evaluate the
segmentation performance.

Data Augmentation This research employed the following data augmentation
steps andomly with random intensity to artificially increase the size of the dataset
and improve the genaralisation capabilities of the model: rotation from -15 to
15 degrees, horizontal and vertical flip, translation of up to 50 pixels, random
signal contrast, and random brightness.

2.4 Design of Experiments

Experiments were designed to study the influence of depth fusion with visual
image modality and to test the HaWANet attention module proposed in this
research. Multiple models with different backbones were developed to test their
performance. Each model was trained with and without depth fusion and tested
with the original HANet module and the proposed HaWANet. The backbones
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included ResNet-18, ResNet-50, ResNet-101, and EfficientNet. These combina-
tions of backbones, data fusion, and attention modules were grouped and all
models were trained.

Evaluated Configurations Different configurations of the proposed architec-
ture were evaluated in this research: baseline UNet, data fusion on UNet, depth
fusion HANET block on UNet, HaWANET block on UNet, and finally, depth
fusion and HaWANET block on UNet. For feature extraction, four different
backbones were evaluated: ResNet18, ResNet50, ResNet101, and EfficientNet.

Evaluation Metrics The ground-truths and the predictions were converted
into a bitmap for each class in such a way that a pixel is assigned a value of
1 if it is assigned to that particular class and 0 if it is not, which were then
used to calculate TP, TN, FP and FN. These were then used to computed the
Intersection over Union (IoU) (also called the Jaccard Index ).

3 Results

The segmentation model detailed in the previous section was modified with var-
ious feature extractors, attention mechanisms, and data fusion schemes, and
tested extensively. This section presents the different configurations used to de-
sign multiple semantic segmentation models and the training setup. The results
of each configuration are described, followed by an overview of the experiments
and the final outcomes.

The different configurations were evaluated in terms of accuracy (usig IoU)
and speed (using frames per second or FPS), and the scores are presented in
Table 1. It was observed that HaWANet with data fusion resulted in the best
performance among all configurations evaluated. Furthermore, it was noted that
data fusion, through the introduction of the additional modality, improved the
performance of HANet, HaWANet, and the baseline model. Table 2 presents
the resultant class-wise scores achieved by the best performing model HaWANet
with data fusion. Some visual explains of the segmentation results are presented
in Figures 6 and 7, for highways or outer road and urban scenes, respectively.

4 Discussion

The primary objective of this research was to develop a multi-modal scene un-
derstanding pipeline. The proposed semantic segmentation network utilises an
encoder-decoder architecture with a height- and width-driven attention scheme,
specifically designed to capture the structural priors of highway road scenes.
This architecture integrates depth data from point clouds within the encoder to
enhance segmentation accuracy.

The segmentation results presented here demonstrate the model’s efficacy in
highway scenes. The predicted masks for cars and trucks are highly accurate.
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Table 1. Comparison of different configurations with different feature extraction back-
bones using IoU and FPS

ResNet 18 ResNet 50 ResNet 101 EfficientNet

IoU FPS IoU FPS IoU FPS IoU FPS

Baseline 0.55±0.04 4.7 0.61±0.07 4.3 0.62±0.04 3.7 0.59±0.05 4.2
Baseline with data fusion 0.57±0.05 4.1 0.63±0.08 3.5 0.64±0.03 3.0 0.61±0.04 3.9
With data fusion
and HANet 0.66±0.04 3.8 0.71±0.03 2.9 0.72±0.05 2.5 0.68±0.06 3.7

With HaWANet
(without data fusion) 0.65±0.04 3.4 0.70±0.03 2.7 0.71±0.05 2.2 0.70±0.06 3.5

With HaWANet
(with data fusion) 0.67±0.04 3.2 0.75±0.03 2.1 0.78±0.05 1.9 0.72±0.06 2.9

Table 2. IoU results for individual classes for the best performed model

Class IoU Class IoU Class IoU

Car 0.81 Person 0.70 Sidewalk 0.80
Truck 0.73 Sky 0.75 Building 0.79
Road 0.89 Vegetation 0.78 Bicycle + Motorcycle 0.75

However, the model occasionally misclassifies pixels on the sidewalk as road.
The inclusion of point-cloud data, which effectively represents the road’s planar
nature, is crucial for improving the accuracy of road segmentation.

In urban scenes, despite fewer training samples, the segmentation network
performs reasonably well. However, the sidewalk class is sometimes misclassified,
likely because the sidewalk and road are at the same level, making them appear
similar in the point-cloud data. This misclassification suggests that further re-
finement is needed in distinguishing these classes.

The limitations of the LiDAR sensor, particularly its maximum range, affect
the segmentation of distant objects. Objects far from the sensor lack point cloud
data, while the sky often contains invalid data points (e.g., -1 or -9999). Interest-
ingly, these negative values help to segment the sky class effectively, indicating
that even seemingly invalid data can provide useful features for segmentation.

The Person class has the lowest IoU score among all classes. This poor per-
formance is attributed to the limited number of training samples for this class,
primarily because the dataset consists mostly of highway scenes where pedes-
trians are infrequent. This finding underscores the need for a more balanced
dataset or additional data augmentation techniques to improve the segmenta-
tion of under-represented classes.

5 Conclusion and Future Work

This research, aimed at addressing the segmentation problem for multimodal sen-
sor data, has presented significant performance improvement over single-modal
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Fig. 6. Predictions of the semantic segmentation model from highways or outer road
scenes.

Fig. 7. Predictions of the semantic segmentation model from urban scenes.

approaches. The developed multi-modal segmentation network successfully in-
tegrates point cloud data to enhance the understanding of road scenes. The
HaWANet attention mechanism effectively captures structural priors, leading to
accurate segmentation in various scenarios. However, challenges remain in dis-
tinguishing closely related classes and in segmenting under-represented classes.

Future work would focus on expanding the dataset, refining the attention
mechanism, and improving the integration of point-cloud data to address these
challenges. Additionally, further development and optimisation of object detec-
tion models using Xenolidar data can extend the applicability of this research in
real-world scenarios.

Acknowledgement

The authors would like to thank Dr Hung Nguyen-Duc, Senior Computer Vision
Engineer at Xenomatix NV, Leuven, Belgium, for the support and guidance.

References

1. Chazette, P., Totems, J., Hespel, L., Bailly, J.S.: Principle and Physics of
the LiDAR Measurement, pp. 201–247 (12 2016). https://doi.org/10.1016/

https://doi.org/10.1016/B978-1-78548-102-4.50005-3
https://doi.org/10.1016/B978-1-78548-102-4.50005-3


HaWANet: Road Scene Understanding with Multi-modal Sensor Data 13

B978-1-78548-102-4.50005-3
2. Chen, B.S., Foster, P., Warkentine, R.: Research and development of VCSEL-

based optical sensors in industrial applications. In: Choquette, K.D., Lei, C. (eds.)
Vertical-Cavity Surface-Emitting Lasers V. vol. 4286, pp. 210 – 218. International
Society for Optics and Photonics, SPIE (2001). https://doi.org/10.1117/12.
424806, https://doi.org/10.1117/12.424806

3. Choi, S., Kim, J.T., Choo, J.: Cars can’t fly up in the sky: Improving urban-
scene segmentation via height-driven attention networks. In: Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition. pp. 9373–9383
(2020)

4. Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20, 273–297
(1995). https://doi.org/https://doi.org/10.1007/BF00994018

5. Couprie, C., Farabet, C., Najman, L., LeCun, Y.: Indoor semantic segmentation
using depth information. arXiv preprint arXiv:1301.3572 (2013)

6. Hazirbas, C., Ma, L., Domokos, C., Cremers, D.: Fusenet: Incorporating depth into
semantic segmentation via fusion-based cnn architecture. In: Computer Vision–
ACCV 2016: 13th Asian Conference on Computer Vision, Taipei, Taiwan, Novem-
ber 20-24, 2016, Revised Selected Papers, Part I 13. pp. 213–228. Springer (2017)

7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770–778 (2016)

8. Li, Y., Ibanez-Guzman, J.: Lidar for autonomous driving: The principles, chal-
lenges, and trends for automotive lidar and perception systems. IEEE Signal
Processing Magazine 37(4), 50–61 (2020). https://doi.org/10.1109/MSP.2020.
2973615

9. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomed-
ical image segmentation. In: Medical image computing and computer-assisted
intervention–MICCAI 2015: 18th international conference, Munich, Germany, Oc-
tober 5-9, 2015, proceedings, part III 18. pp. 234–241. Springer (2015)

10. Sudre, C.H., Li, W., Vercauteren, T., Ourselin, S., Jorge Cardoso, M.: Generalised
dice overlap as a deep learning loss function for highly unbalanced segmentations.
In: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical
Decision Support: Third International Workshop, DLMIA 2017, and 7th Interna-
tional Workshop, ML-CDS 2017, Held in Conjunction with MICCAI 2017, Québec
City, QC, Canada, September 14, Proceedings 3. pp. 240–248. Springer (2017)

11. Tan, M., Le, Q.: Efficientnet: Rethinking model scaling for convolutional neural
networks. In: International conference on machine learning. pp. 6105–6114. PMLR
(2019)

12. Valada, A., Mohan, R., Burgard, W.: Self-supervised model adaptation for multi-
modal semantic segmentation. International Journal of Computer Vision 128(5),
1239–1285 (2020)

13. Valada, A., Oliveira, G.L., Brox, T., Burgard, W.: Deep multispectral semantic
scene understanding of forested environments using multimodal fusion. In: 2016
international symposium on experimental robotics. pp. 465–477. Springer (2017)

14. Wada, K.: Labelme: Image Polygonal Annotation with Python. https://doi.org/
10.5281/zenodo.5711226, https://github.com/wkentaro/labelme

15. Wang, D., Watkins, C., Xie, H.: Mems mirrors for lidar: A review. Microma-
chines 11(5) (2020). https://doi.org/10.3390/mi11050456, https://www.mdpi.
com/2072-666X/11/5/456

https://doi.org/10.1016/B978-1-78548-102-4.50005-3
https://doi.org/10.1016/B978-1-78548-102-4.50005-3
https://doi.org/10.1016/B978-1-78548-102-4.50005-3
https://doi.org/10.1016/B978-1-78548-102-4.50005-3
https://doi.org/10.1117/12.424806
https://doi.org/10.1117/12.424806
https://doi.org/10.1117/12.424806
https://doi.org/10.1117/12.424806
https://doi.org/10.1117/12.424806
https://doi.org/https://doi.org/10.1007/BF00994018
https://doi.org/https://doi.org/10.1007/BF00994018
https://doi.org/10.1109/MSP.2020.2973615
https://doi.org/10.1109/MSP.2020.2973615
https://doi.org/10.1109/MSP.2020.2973615
https://doi.org/10.1109/MSP.2020.2973615
https://doi.org/10.5281/zenodo.5711226
https://doi.org/10.5281/zenodo.5711226
https://doi.org/10.5281/zenodo.5711226
https://doi.org/10.5281/zenodo.5711226
https://github.com/wkentaro/labelme
https://doi.org/10.3390/mi11050456
https://doi.org/10.3390/mi11050456
https://www.mdpi.com/2072-666X/11/5/456
https://www.mdpi.com/2072-666X/11/5/456


14 S. Chatterjee et al.

16. Warren, M., Block, M., Dacha, P., Carsonn, R., Podva, D., Helms, C., Maynard,
J.: Low-divergence high-power vcsel arrays for lidar application. p. 14 (02 2018).
https://doi.org/10.1117/12.2290937

17. Xenomatix: Xenomatix solidstate lidar scanner (2022), https://xenomatix.com/
solid-state-lidar/, [Online; accessed 19-April-2022]

18. Yi-de, M., Qing, L., Zhi-bai, Q.: Automated image segmentation using improved
pcnn model based on cross-entropy. In: Proceedings of 2004 International Sympo-
sium on Intelligent Multimedia, Video and Speech Processing, 2004. pp. 743–746
(2004). https://doi.org/10.1109/ISIMP.2004.1434171

19. Zhang, Y., Sidibé, D., Morel, O., Mériaudeau, F.: Deep multimodal fu-
sion for semantic image segmentation: A survey. Image and Vision Com-
puting 105, 104042 (2021). https://doi.org/https://doi.org/10.1016/j.
imavis.2020.104042, https://www.sciencedirect.com/science/article/pii/
S0262885620301748

https://doi.org/10.1117/12.2290937
https://doi.org/10.1117/12.2290937
https://xenomatix.com/solid-state-lidar/
https://xenomatix.com/solid-state-lidar/
https://doi.org/10.1109/ISIMP.2004.1434171
https://doi.org/10.1109/ISIMP.2004.1434171
https://doi.org/https://doi.org/10.1016/j .imavis.2020.104042
https://doi.org/https://doi.org/10.1016/j .imavis.2020.104042
https://doi.org/https://doi.org/10.1016/j .imavis.2020.104042
https://doi.org/https://doi.org/10.1016/j .imavis.2020.104042
https://www.sciencedirect.com/science/article/pii/S0262885620301748
https://www.sciencedirect.com/science/article/pii/S0262885620301748

	HaWANet: Road Scene Understanding with Multi-modal Sensor Data using Height-Width-driven Attention Network

