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Abstract. This work proposes a hybrid approach to Data Augmenta-
tion that blends inductive and deductive reasoning. In particular, the
approach effectively utilizes a modest collection of labeled images while
employing logic programs to declaratively define the structure of new im-
ages, allowing for flexible and dynamic image generation; the use of logic
programming ensures adherence to both domain-specific constraints and
given desiderata. The resulting structures are then used for guiding the
generation of new realistic images based on a dedicated Deep-Learning
process. The general approach can be particularly of use in biomedical
and healthcare scenarios, where building extensive datasets of quality
images is in general a hard prerequisite for many applications that is
challenging to meet. The approach is specialized to two real-world case
studies featuring laryngeal endoscopic and cataract images, respectively,
and experiments conducted for assessing the method are discussed.

Keywords: Data Augmentation · Hybrid Approaches · Deep Learning
· Deductive Reasoning · Inductive Reasoning.

1 Introduction

In recent years, Deep Learning (DL) applications have gained significant atten-
tion for their impressive results in various fields such as image processing, pattern
recognition, object recognition [32,27]. However, these methodologies depend on
models that require training on proper background knowledge, which must be
represented in datasets that are adequate in terms of size, quality, and various
other factors. Obtaining a substantial amount of “good” training data can be
challenging in certain domains; this is particularly common in biomedicine, due
to factors such as accessibility, costs, manual annotation effort, data availability,
and class imbalance. To address this challenge, data augmentation techniques
have been extensively researched to enrich and enhance poor datasets. Genera-
tive models like Generative Adversarial Networks (GANs) have been proposed,
in particular to create synthetic yet realistic images, showing significant poten-
tial. However, these approaches also suffer from drawbacks and limitations. For



2 P. Bruno et al.

instance, their training can be unstable and slow [16]; moreover, guiding fea-
ture extraction and image generation typically relies on the composition and
adaptation of the training dataset, making it challenging to leverage available
knowledge and express preferences for data generation. Nonetheless, such knowl-
edge can be valuable in avoiding the generation of erroneous images, reducing
generation times, and enhancing overall result quality by ensuring reliable gen-
eration of images aligned with specific criteria.

In this work, we present IDADA, a framework blending inductive and deduc-
tive strategies for data augmentation. IDADA relies on Answer Set Programming
(ASP), a purely declarative formalism rooted in logic programming and non-
monotonic reasoning [4,17,18]. ASP offers explainability by design, suitability
for complex Knowledge Representation and Reasoning (KRR) tasks, and bene-
fits from available efficient implementations [22]; its use for data augmentation
facilitates the expression of constraints arising from background knowledge and
desired features, thus allowing for guiding the automatic generation of new data
that comply with domain knowledge.

Currently, IDADA focuses on image data generation. Basically, starting from
a set of real (or realistic) images, IDADA: (i) identifies (at a semantic level) a
set of distinctive elements that are supposed to be present in the images to be
created; (ii) produces a knowledge base by encoding in ASP needed domain
knowledge along with constraints and desiderata about how the new images
should appear, in terms of the identified elements; (iii) generates a number of
image structures by placing instances of distinctive elements and arranging them
according to the encoded knowledge base, thus obtaining new labeled images
(that are, essentially, semantically segmented images); (iv) employs DL methods
to “fill” the image areas, thus producing plausible synthetic images based on the
labeled image structures already generated.

To the best of our knowledge, this work represents one of the pioneering
attempts in using Answer Set Programming (ASP) for medical image generation
and augmentation.

We experiment with IDADA for generating synthetic images in two biomed-
ical scenarios: cataract images starting from the Cataract Dataset (CaDIS) [19]
and laryngeal endoscopic images, starting from the Laryngeal Endoscopic Dataset
[25]. The results are encouraging, and demonstrate the effectiveness of IDADA in
enabling the generation of new images based on declaratively expressed criteria.

The remainder of the paper is structured as described next. In Section 2 we
provide some background and discuss related works, before introducing IDADA,
the herein proposed framework for data augmentation, in Section 3. In Section 4
we report on the result of the experimental campaign, and eventually present
our conclusion and briefly discuss future perspectives in Section 5.

2 Related Work

Image data augmentation techniques have been widely studied in the literature
and used in state-of-the-art solutions to reduce overfitting, increase generalizabil-
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ity, and overcome the lack of data or other limitations that could affect algorithm
performance. Indeed, data augmentation: (i) results in general much less expen-
sive than regular data collection with its label annotation; (ii) can be extremely
accurate (it is generated from ground-truth data); (iii) is controllable, to some
extent, in generating balanced data [23].

Typically, image data augmentation is performed relying on “classical” strate-
gies or methods based on DL techniques. In the first case, geometric transfor-
mation (i.e., flipping, rotation, shearing, cropping, translation in the geometric
transformation) and photometric shifting (i.e., color space shifting, image filter-
ing, addition of noise) are applied to existing available images in order to en-
rich the collection [23]. However, these techniques present some disadvantages,
including memory consumption, transformation costs, and additional training
time. Also, some strategies, such as photometric shifting, can produce the elim-
inations of important color information or specific features in the image, thus
not always guaranteeing the preservation of nature and meaning of the image
labels [29]. Hence, DL-based methods have been increasingly employed. Indeed,
DL methods, especially Generative Adversarial Networks (GAN)-based ones,
represent a huge breakthrough in image generation, due to the ability to gen-
erate artificial images from an initial dataset and then make use of them to
“predict” image features. GANs are composed of two networks: a generator net-
work, that creates tentative fake images, and a discriminator network, that aims
at identifying whether the generated images are indicative of real-world evidence
or not [1]. Nevertheless, GANs are inherently unstable, and suffer from both the
lack of meaningful measures to evaluate the quality of their result and limited
sample generation capabilities when only a little representative of the population
is available.

In the biomedical context, the availability of huge datasets is a major con-
cern: it is indeed a difficult task, as it requires continuous efforts, especially
in the long term. Recent advancements in deep learning have shown promis-
ing results in classifying pathologies and segmenting medical images [5,9,20,21].
However, these improvements necessitate a consistent and diverse dataset for
effective training, highlighting the urgent issue of data scarcity and the need for
effective solutions. Image data augmentation techniques address this limitation
by generating additional medical images, which can be used to design and refine
automated assessment methods for pathological conditions. By doing so, these
techniques assist healthcare providers in identifying the most appropriate pre-
ventive interventions and therapeutic strategies without relying solely on large
medical datasets [12].

Kossen et al. [24] used GANs to create synthetic brain data and corresponding
labels, showing good performance in the arterial brain vessel segmentation task.
Similarly, Toikkanen et al. [31] used GAN to improve the quality of the predictive
model in localizing the hemorrhage from computerized tomography (CT) scans.
Synthetic samples from generative models have been demonstrated to alleviate
the in-balance and scarcity of labeled training issues. In the same context, Zhai
et al. [33] proposed a novel asymmetric semi-supervised GAN (ASSGAN) to
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Fig. 1: IDADA Workflow: The process begins with analyzing the classes to iden-
tify dynamic and static classes based on the initial data. Next, it computes the
label positioning for each dynamic class and generates a comprehensive label en-
compassing all classes, according to the desired criteria and domain knowledge.
Finally, a photo-realistic raw image referencing the initial data is created.

generate reliable segmentation-predicted masks. The authors show that in the
absence of labeled data, the network can make use of unlabeled data to improve
segmentation performance.

ASP can be used to declaratively express quantitative and qualitative desider-
ata as well as content generation strategies, providing one with the possibility to
easily increment, modify, and update new knowledge at will. Among the different
applications, ASP has also been explored in the realm of scheduling, where it can
optimize resource allocation and improve operational efficiency [13,14,15]. More-
over, ASP has been applied in the improvement of medical image segmentation
and quality (e.g., [6,7]), although these efforts primarily focus on enhancing ex-
isting images rather than generating new ones. Other logic-based contributions
have emerged in the related field of Content Generation, where, for example, ASP
has been employed to produce game content with desirable properties [11,28,30].
To the best of our knowledge, IDADA, a work inspired by [8], represents one of
the first logic-based approaches specifically designed for image data augmenta-
tion.

3 The IDADA Framework

In this section we introduce IDADA, a framework built upon an Inductive-
Deductive Approach for Data Augmentation. We start by illustrating the general
workflow; then, we discuss a more detailed application to a specific case study.

3.1 Workflow

The workflow of the proposed framework is illustrated in Figure 1. At the first
step, original images are analyzed in order to find all possible featured objects.
Thus, a number of classes are identified collecting such objects, and are properly
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assigned with a label. Note that, depending on the specific scenario, this phase
might require the availability of proper domain knowledge. Hence, two kinds of
classes are defined, producing a grouping of all possible objects into two cate-
gories: dynamic classes, featuring objects that can significantly vary from image
to image (e.g., size, position, shape, orientation, etc.); and static classes, which
can be basically considered “fixed” due to their minimal variation across different
images.

The second step focuses on dynamic classes, and consists of the generation
of new eligible combinations (in terms of position or other spatial features) of
objects of such classes. To achieve this, we rely on Answer Set Programming
(ASP) to declaratively express how such combinations must be performed. In
particular, ad hoc ASP programs produce proper label positioning in images,
according to given requirements that can be related to both absolute location
and relative positioning/layering of objects of dynamic classes within the image
itself. The output is basically a set of (labeled) image structures. Notably, the
declarative ASP-based approach allows us to easily integrate the domain knowl-
edge and custom criteria to which all generated image structures and labels must
comply.

The last step consists of the generation of new raw images corresponding
to the previously created labels (i.e.: if semantically segmented, the raw images
match the corresponding labels produced earlier); in particular, the final result
is a set of images that: (i) differ from the original ones in terms of position of dy-
namic classes; (ii) comply with all the specified criteria (both domain knowledge
and custom desiderata); (iii) are photo-realistic and can be used for augmenting
the original dataset.

3.2 IDADA at work

In the following we illustrate the application of the framework on a case study:
the Cataract Dataset for Image Segmentation (CaDIS) [19].

Class Analysis. As introduced above, the first step requires to analyze the
dataset with the aim of identifying the classes comprising all elements possi-
bly featured in the images. In general, this would benefit from proper domain
knowledge and potentially even interactions with domain experts, for correctly
performing semantic segmentation. As for the CaDIS dataset, this information
is already available, as each of the 4670 raw frames extracted from 25 videos of
cataract surgery is paired with a semantic labelling annotated by experts (from
this point onward, they will be referred to as “original labelling” for ease of read-
ing). In particular, images comprise 36 classes: 29 surgical instrument classes, 4
anatomy classes, and 3 miscellaneous classes.

The analysis was completed by determining, for each class, whether it should
be considered dynamic; the choice for each class is made based on prior knowl-
edge and input from domain experts. In this case, we checked how classes change
across images (in doing this, given that this is a medical domain, we relied both
on the labeled images and the raw frames). Specifically, in the CaDIS dataset,
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(a) (b) (c) (d)

Fig. 2: Example of class analysis: (a) original label; (b) static classes considered
as fixed background; (c) iris and (d) pupil, as dynamic classes, split in single
binary segmentation.

the pupil, the iris, and the surgical instruments classes are considered as dy-
namic classes, while the classes cornea, skin, surgical tape, and eye retractors are
considered as static ones.

Next, the actual input for the next step in the framework is prepared. In
particular, each label corresponding to a dynamic class is extracted to generate
a segmentation for that specific class (referred to as binary segmentation). All
the binary segmentations of each dynamic class are collected together to create
a representative dataset of the possible shapes assumed by that specific object,
which will be layered with the other labels afterward to create a new label.
Figure 2 shows an example of classification comprising the classes iris and pupil.
Specifically, starting from the original label (Figure 2 (a)), the static classes are
selected and fixed as background (Figure 2 (b)). In contrast, the dynamic ones,
(i.e., iris and pupil) are split into single binary segmentation (Figure 2 (c) and
(d), respectively).

Label positioning and layering. At the second step, we make use of an ad-hoc
ASP program for managing combinations and layering of labels. The design of
this stage can vary significantly, depending on the specific domain and the type of
images one aims to generate, to the greatest extent. In this regard, the flexibility
of ASP in Knowledge Representation and Reasoning is extremely beneficial.

In the following, we describe how we approach the problem in the chosen
domain; we assume that the reader is familiar with the basic notions of the ASP
language and refer to [10] for details.

As already mentioned, the main task in this phase consists in the design of
proper ASP programs encoding the needed knowledge. For the case of images
in the CaDIS dataset, we built an ASP program that takes as input labels of
size 540× 960 pixels, represented as matrices of the same size. Matrix elements
are modeled by facts of the form cell(R, C, CLASS), where variables R, C, and
CLASS are mapped to rows and columns of the matrix and the class associated to
that cell, respectively. The output produces a new valid positioning of the objects
in the image, represented by atoms of the form new_cell(R, C, CLASS), de-
noting the class CLASS that is contained in each cell (R,C). In order to effectively
express viable choices for the new positions of objects, the idea is to identify a
specific number of “pivot points”, which can vary depending on the object. These
pivot points are then used to accurately reposition the object within the image.
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(a) (b) (c) (d) (e)

Fig. 3: Example of positioning and layering of iris and pupil classes: (a) identifi-
cation of pivot points for the pupil, (b) incorrect layering of the pupil on top of
the iris, (c) incorrect shape and proportion of the pupil relative to the iris, (d)
incorrect proportion of the iris relative to the cornea, and (e) correct positioning
and layering of the pupil and iris.

The repositioning approach takes into account the hierarchical relationships be-
tween classes, determining the sequence in which each class should appear based
on prior knowledge or desiderata. This also dictates the order in which the final
label is reassembled. In the case of discourse, i.e., cataract images, the process
begins with the fixed background layer, followed by the addition of the iris layer,
and finally the placement of the pupil layer on top. Each label corresponds to a
layer that contributes to the final image. For the pupil and iris classes, we opted
to identify 12 pivot points situated along the contour of both the pupil and iris
classes, thus simplifying the modeling of their shapes and positions. More in
detail, we first guess four main pivots, one for each cardinal point, by means of
the following choice rules [10]:

{pivot(R,C,3,pupil) : max_col(C,pupil), cell(R,C,pupil)} = 1.
{pivot(R,C,6,pupil) : max_row(R,pupil), cell(R,C,pupil)} = 1.
{pivot(R,C,9,pupil) : min_col(C,pupil), cell(R,C,pupil)} = 1.
{pivot(R,C,12,pupil) : min_row(R,pupil), cell(R,C,pupil)} = 1.

where predicates max_col(C,pupil), max_row(R,pupil), min_col(C,pupil),
and min_row(R,pupil) represent the column C and the row R having the maxi-
mum (resp., minimum) index cell containing the class pupil. The remaining eight
pivots are then identified as follows: we derive two additional pivots from each
pair of adjacent main pivots (3 − 6, 6 − 9, 9 − 12, 12 − 3) by first calculating
the difference between the rows and columns of the considered pair; one of the
two pivots corresponds to the cell lying on the contour of the pupil with a row
equal to the midpoint between the rows of the two main pivots. Similarly, the
remaining pivot is calculated using the same reasoning applied to the columns.

We point out that the identification of the pivot points is crucial for under-
standing, for instance, the object inclination, and thus for selecting (via choice
rules) from the representative dataset the appropriate label for the construction
of the new image. This process is essential for accurate image generation.

Next, we define the following constraints to ensure that the construction of
the image follows the (medical) domain knowledge:
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(c1) :- pivot(R,C,_,pupil), not cell(R,C,iris).
(c2) :- pivot(R,C,_,iris), not cell(R,C,cornea).
(c3) :- centers_distance(D), D > 70.
(c4) :- width(WP,pupil), width(WI,iris), height(HP,pupil),

height(HI,iris), WP > HP*WI/HI + 80.
(c5) :- width(WP,pupil), width(WI,iris), height(HP,pupil),

height(HI,iris), WP < HP*WI/HI - 80.
(c6) :- area(AI,iris), area(AC,cornea), R = AC/AI, R > 4.

Here, (c1) ensures that the pupil lies on the iris. (c2) forces all of the iris class
pivots to lie on a cell of the cornea class. (c3) forbids the generation of images
where the pupil is not properly centered with respect to the iris. Specifically, the
predicate centers_distance(D) stands for the distance D, expressed in pixel,
between the pupil’s and the iris’ centers. We impose this distance not to exceed
an empirically chosen threshold, which amounts to 70 pixel. (c4) and (c5) force
the iris and the pupil to have similar shapes. The predicates width and height
indicate, for both pupil and iris, the width and height, respectively; for ensur-
ing that their dimensions are proportionate, we impose an empirical tolerance
of ±80 pixels. (c6) ensures that the proportion between the iris and cornea is
correctly observed. We use the predicate area to address the area of the iris
and cornea; we then force that the cornea area is at most 4 times the iris area.
Figure 3 illustrates the application of the approach to the iris and pupil classes.
The ASP program generates the twelve pivot points for the pupil class (Figure 3
(a)), ensuring (thanks to the modelled constraints) that the pupil’s positioning
over the iris aligns with domain knowledge. For instance, Figure 3 (b) depicts
a pupil incorrectly positioned on the iris, violating constraint (c1). Figure 3 (c)
shows a pupil with incorrect shape and proportion placed over the iris, violating
constraints (c4) and (c5). Figure 3 (d) shows an iris with incorrect proportion rel-
ative to the cornea, violating constraint (c6). Finally, Figure 3 (e) demonstrates
a correctly generated label.

To manage the several instrument classes with similar properties, we grouped
26 out of the 29 instrument classes into seven categories, and the remaining three
classes into class eye retractors, which is identified as a fixed class and is already
part of the background, whereas the remaining two classes iris hooks and marker
required special pre-processing. Since multiple instances of the same instrument
often appear in a single image, we defined a pre-processing used to increase the
number of labels depicting the available instruments: in particular, we generated
separate binary segmentation for each instance using Python and ASP scripts.

The modeling of surgical instruments follows the strategy described above,
including identifying the pivot point(s) and choosing an appropriate binary seg-
mentation to add to the image we are creating.

The interested reader can find all material at https://github.com/DeMaCS-
UNICAL/Data-augmentation-via-ASP.

Raw generation. At this step, the goal is to create realistic images that comply
with the semantically-guided image structure generation. To this aim, in this case

https://github.com/DeMaCS-UNICAL/Data-augmentation-via-ASP
https://github.com/DeMaCS-UNICAL/Data-augmentation-via-ASP
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we use SPADE (Semantic Image Synthesis With Spatially-Adaptive Normaliza-
tion) [26], a state-of-the-art paired-data technique, for generating proper textures
for each image part. SPADE processes the input semantic layout (defining parts
or objects and their spatial relationships) using convolution, normalization, and
nonlinearity layers. In SPADE, the mask is projected onto an embedding space
and convolved to produce modulation parameters, which are tensors with spatial
dimensions. These tensors are multiplied and added to the normalized activa-
tion element-wise. We used the same configuration as the original authors [26],
i.e., learning rates of 0.0001 for the generator, 0.0004 for the discriminator, and
ADAM optimizer, and trained the network for 100 epochs.

4 Experimental analysis

In order to assess the overall effectiveness of the IDADA approach to data aug-
mentation, along with its versatility when dealing with different scenarios, we
tested the presented framework over two very diverse real datasets. In partic-
ular, besides the already mentioned CaDIS dataset that features cataract im-
ages, we considered also the Laryngeal Endoscopic Images dataset [25]. Just
like for the CaDIS dataset, also for this case all material is completely available
at https://github.com/DeMaCS-UNICAL/Data-augmentation-via-ASP.

The Laryngeal Endoscopic Images dataset contains 536 manually segmented
in vivo color images of the larynx, captured from videos recorded during two
resection surgeries. The images include seven classes: void , vocal folds, other tis-
sue, glottal space, pathology , surgical tool , and intubation. The dataset includes
eight sequences from two patients, categorized into five different groups based
on the features exhibited by the images. We divided the classes into two cate-
gories based on their relevance. In particular, we designated vocal folds, glottal
space, and other tissue as static classes, as their shapes and appearances re-
main relatively consistent across different images. In contrast, we focused on the
pathology , intubation, and surgical tool classes, chosen as dynamic classes.

In both the scenarios of test, IDADA proved to be a viable approach for
agumenting the image datasets, granting coherence with background knowledge,
compliance with custom desiderata and similarity of the final results. This is
particularly encouraging, especially noting that the two case studies significantly
differ to a large extent. For a qualitative evaluation of our approach, we showcase
selected results in Figure 4. The examples illustrate the effectiveness of our
method in generating images that closely match the originals.

For the sake of reproducibility and transparency, all results of our experi-
ments can be found at https://github.com/DeMaCS-UNICAL/Data-augmenta
tion-via-ASP.

Furthermore, besides considerations about the viability of the approach and
qualitative assessments, we also wanted to perform a more formal analysis. In
particular, we wanted to quantitatively evaluate the similarity between the orig-
inal images and the generated synthetic ones. To this aim, we used the Kernel
Inception Distance (KID) [2]. KID is typically used for measuring the quality

https://github.com/DeMaCS-UNICAL/Data-augmentation-via-ASP
https://github.com/DeMaCS-UNICAL/Data-augmentation-via-ASP
https://github.com/DeMaCS-UNICAL/Data-augmentation-via-ASP
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Fig. 4: Examples of laryngeal endoscopic images (a-g,b-h,c-i) and cataract images
(d-j,e-k,f-l) obtained by IDADA. Labeled images and the corresponding raw ones
are reported in the first and second row, respectively.

of generative models [3] by comparing the distributions of generated and real
images using the squared Maximum Mean Discrepancy (MMD) with a polyno-
mial kernel. Lower KID scores indicate higher similarity and better quality of
generated images. KID is advantageous for its unbiased nature and reliability,
particularly with smaller sample sizes. On the CaDIS dataset, the resulting KID
score is 0.10, indicating a very high level of similarity. This proves the quality of
the results obtained by means of IDADA, due to both the semantically-guided
label generation pervormed via ASP and SPADE’s impressive capability to cap-
ture the nuanced characteristics of the original data, along with robustness and
precision in generating high-fidelity images from labels. Similarly, on the vocal
folds dataset, the KID score of 0.26 shows a commendable level of similarity be-
tween the generated and original images. While slightly higher than the CaDIS
score, this still reflects a strong performance of SPADE, effectively capturing
many important features of the original images; on the overall, results under-
score its versatility and effectiveness across different datasets. The significant
performance on CaDIS, combined with the solid results on vocal folds, suggests
that the use of ASP for label generation combined with SPADE for finishing the
raw images make IDADA a powerful and reliable tool for generating realistic
images from original (potentially limited) datasets.

5 Conclusion and Perspectives

In this paper we presented IDADA, a framework aimed at enabling the declara-
tive specification of data augmentation processes. In particular, we relied on An-
swer Set Programming (ASP) to guide the generation of realistic images within
the biomedical domain. Our methodology involves collecting a dataset of labeled
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images and identifying the static and dynamic classes to work exclusively with
those classes that show a significant change in the images; this allows for more
efficient processing and enhances the relevance of the generated images. Using
ASP reasoning tasks, we generate new labeled images by detailing the possi-
ble appearances of these elements and composing the output appropriately. The
newly created semantically labeled images are used as input for proper DL-based
methods, which then produce the final pseudo-realistic images.

We assessed the effectiveness of IDADA using images from two distinct
datasets, featuring cataract and laryngeal endoscopic images, respectively, yield-
ing promising results. The experiments show that declarative specifications can
be seamlessly integrated into the image data augmentation process.

It is worth noting that ASP-encoded specifications allow us to incorporate
both domain knowledge and desiderata, providing significant customization ca-
pabilities for generating new raw images. The approach eliminates the need for
manually finding, collecting, and adapting data within a domain (e.g., surgical
images with a specified number of instruments or particular organ positions).
Furthermore, ASP grants robustness in handling knowledge updates, for instance
allowing easy modifications of logic programs to change the number of elements
in a given class or to adjust spatial relationships among elements (e.g., generating
images with different numbers of instruments).

On a broader scale, incorporating ASP as the declarative formalism within
the data augmentation process enables the collection and translation of declar-
ative specifications (i.e., logic programs) into properly generated labeled images
suitable for DL methods. With this respect, SPADE, in particular, has shown
satisfactory results, producing realistic raw images that accurately correspond
to their labeled counterparts.

Future work will focus on conducting experimental campaigns to evaluate
the quality of the generated images in relation to specific tasks in the biomedical
domain, and to assess the performance of our approach on additional datasets.
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