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Abstract. This paper explores Interactive Grounded Language Under-
standing (IGLU) within Human-Robot Interaction (HRI). Here, a robot
interprets user commands related to its environment, determining if a
specific command can be executed. When ambiguities or incomplete data
arise, the robot asks relevant clarification questions. Current models,
trained on English datasets, leverage multi-modal and end-to-end capa-
bilities by fine-tuning architectures like LLaVA. These models combine a
Visual Encoder, processing images of the environment, with Large Lan-
guage Models (LLMs) encoding user requests, enabling agents to discern
command executability and seek clarifications when necessary. While
many LLMs are inherently multi-lingual, fine-tuning them on English-
only datasets limits their application in other languages, such as Italian.
To address this, we developed MM-IGLU-IT, a dataset for Multi-Modal
Interactive Grounded Language Understanding in Italian. This dataset
was created by automatically translating existing large-scale datasets
and manually validating them for accuracy, resulting in over 6,800 com-
mand examples. Training a model like LLaVA, fine-tuned over a multi-
lingual base model such as LLaMA2, allowed us to achieve comparable
performance in both English and Italian. This resource is released on
a dedicated GitHub page at https://github.com/crux82/MM-IGLU-IT
and we hope it will advance multi-modal models in the Italian language,
providing a valuable resource for ongoing research.

Keywords: Human-Robot Interaction · Interactive Grounded Language
Understanding · Large Language Models · Multi-Modality

1 Introduction

In recent years, significant progress has been made in developing models for text
comprehension and interpretation. These models can answer questions, generate
narratives, and interpret natural language and images [14, 23, 35, 39]. Addition-
ally, there is a growing interest in models focused on interpreting commands,
evidenced by the proliferation of Large Language Models (LLMs) like ChatGPT.
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In robotics, while models excel at understanding human instructions, inter-
preting commands in real-world scenarios adds complexity. For instance, com-
mands may be ambiguous, requiring clarification to ensure correct actions. The
Interactive Grounded Language Understanding (IGLU) [13] task at NeurIPS
2022 showcased advances in natural language command interpretation. Here,
“Understanding” involves interpreting a user’s command, checking its feasibility,
and generating an appropriate response. In this task, a human “Architect” gives
commands to a robotic “Builder” in a Minecraft-like environment, such as “Place
3 green blocks vertically above the red block ”. The robot must determine if the
commands are executable or need clarification. To address the challenges of com-
mand interpretation in Human-Robot Interaction (HRI), two primary strategies
have emerged: (i) utilizing a Knowledge Base (KB) to store comprehensive entity
information and integrate this knowledge into models; (ii) leveraging images to
capture intricate details of nearby objects, including their spatial relationships,
shapes, and colors, to develop end-to-end systems capable of accurately un-
derstanding and responding to user queries. These two strategies can be used
independently or combined within a more complex system. Inspired by the latter
method, the MM-IGLU [11] resource expands the original IGLU resource by in-
corporating images that depict block arrangements with their respective colors,
paired with textual commands and expected responses from the robot, which
include phrases like “Yes, I can execute this command" or “Do you want me to
move the red block positioned on the right or left?". This enhancement enables
the adoption of multi-modal approaches that merge visual perception encoding,
obtained through advanced computer vision techniques, with text encoding. No-
table examples of this class include ChatGPT4 [26], Flamingo [1], LLaVA [20],
CogAgent [9] and Idefics [17].

However, MM-IGLU is exclusively for English language data, allowing for
the training and evaluation of multi-modal LLMs only in English. To enable
multi-modal LLMs to work with the Italian language, we created MM-IGLU-IT
by translating and, most importantly, manually validating the available English
data from MM-IGLU into Italian, resulting in more than 6,800 examples of
commands. By training a multi-modal LLM, such as LLaVA, fine-tuned over a
multi-lingual base model like LLaMA2 with the Italian data, we achieved com-
parable performance in both English and Italian. We hope this dataset will sup-
port the advancement of multi-modal models for the Italian language, providing
a valuable resource for ongoing research in this domain.

In the rest of the paper, Section 2 describes the related work, Section 3
describes the resources and architectural frameworks used, Section 4 presents
and discusses the experimental evaluation while Section 5 derives the conclusion.

2 Related Works

The generation of clarifying questions for human-robot interaction dates back
to Winograd’s foundational research [38]. Since then, many approaches have
been developed, from human-made templates, such as cloze-type [8], rule-based
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Fig. 1. Taken from the IGLU challenge description. Top: The architect’s command was
clear and no questions were needed, thus the Builder can execute it. Bottom: The word
’leftmost ’ in the Command is ambiguous, so the Builder asks a clarifying question.

[24, 34], to semi-automatic questions [19, 33]. The most recent research has in-
troduced Transformer-based techniques. This attention-based architecture, pre-
sented by [37], is an encoder-decoder architecture that has led to different model
families. The encoder component, which may correspond to models like BERT
[6], RoBERTa [21], and DeBERTa [7], encodes input sequences by using self-
attention. In contrast, decoders, such as GPT [30], GPT-3 [4], and LLaMA [36],
generate output sequences auto-regressively. LLaMA is a massive model with
various applications to linguistic tasks, as shown in [10]. Examples of encoder-
decoder models include T5 [31] and BART [18], which excel in tasks like trans-
lation, summarization, and question-answering. More recent research on gener-
ating clarifying questions has introduced transformer-based techniques. In [16],
BERT is trained on an inverted SQuAD dataset [32], generating questions from
provided text and answers. A different approach is expressed in [22] where GPT-
2, used for the same dataset excluding answers, generates questions based purely
on the context.

Despite these advancements, existing architectures focus on generating ques-
tions about a text but do not attempt to interact directly with the user to gather
additional information in a specific environment. This limitation hinders the de-
velopment of truly interactive systems that can dynamically engage with users.
In the context of HRI, the successful interaction between the human and the
robot is crucial. Effective collaboration requires clear roles and an understand-
ing of each participant’s position in the space [28]. For instance, [15] explores
simulations of human behaviors where a robotic leader provides natural language
commands, and the evaluation focuses on human task execution. However, this
setup lacks full interactivity, as the human follower cannot ask questions but
must follow the given instructions. Conversely, [25] investigates a dynamic in-
teraction between a human and a robot capable of identifying when provided
information is inadequate, a feature extended in [11].
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The Interactive Grounded Language Understanding (IGLU) challenge, pre-
sented in [13], promotes research in Human-Robot Interaction, emphasizing col-
laboration via natural language. The challenge involves generating interactive
agents that execute tasks using grounded language instructions in teamwork
settings. Within IGLU, the “Architect” (Human Agent) instructs the “Builder”
(AI Agent) on arranging colored blocks in a voxel environment. The Builder can
seek clarifications if instructions are ambiguous, posing questions, as shown in
Figure 1. In this context, interactions are single-turn: the Architect instructs,
and the Builder acts or asks for clarity. More details about data gathering can
be found in [2, 3, 12, 13]. However, the IGLU dataset lacks real-world images or
natural language descriptions, and examples aren’t categorized by command ob-
jectives, limiting the possibility of investigating multi-modal models. The work
described in [11] aims to generate fully interactive systems based on Language
Models, addressing these gaps by introducing multi-modal data and natural lan-
guage descriptions. They integrate visual information, such as images of the
environment, to explore unified visual and language systems. The paper tackles
the task of Grounded Question Generation via a multi-modal approach integrat-
ing a Language Model based on LLaMA [36] with a Vision Model based on CLIP
[29], merging both visual and textual data.

Although many models, including [36], are inherently multi-lingual, fine-
tuning on English-only datasets limits their applicability to other languages.
This work investigates the positive impact of creating an Italian dataset to en-
able effective evaluation and fine-tuning of multi-modal models in Italian. By
developing MM-IGLU-IT, we aim to extend these models’ capabilities to oper-
ate in Italian, thus broadening their applicability in human-robot interaction.

3 MM-IGLU-IT: An Italian Multi-Modal Dataset for
Grounded Language Understanding

The original IGLU dataset primarily provided data that are numerical-only (such
as the positions of the blocks and the numerical identifier of the color), which
limited its direct applicability to multi-modal neural approaches that integrate
vision and language, usually based on images of the environment. MM-IGLU
[11] overcomes these limitations by incorporating images showing block config-
urations and natural language descriptions of the environment. As illustrated
in Figure 2, an instruction like “Break the green blocks” cannot be executed if
there are no green blocks in the environment, prompting the agent to seek clar-
ification from the architect. The visual representation provided by these images
enables the application of advanced computer vision techniques. Furthermore,
MM-IGLU includes detailed textual descriptions of the blocks, such as “There
are no blue blocks, no yellow blocks, no green blocks, no orange blocks, eight pur-
ple blocks, four of which are on the ground, six red blocks, one of which is on the
ground ”. They are made by converting the three-dimensional block coordinates
into detailed narratives that enumerate the number of blocks, classify them by
color, and specify their positions, enhancing the model’s ability to interpret and
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respond to commands accurately. These linguistic descriptions allow the use of
Large Language Models (LLMs) even in the absence of visual inputs, enhancing
the dataset’s versatility.

While multi-modal models like LLaVA can leverage LLMs agnostically, whether
language-specific or multi-lingual, MM-IGLU’s exclusive use of English data re-
stricts the training and evaluation of models in other languages, such as Ital-
ian. To overcome this limitation, we developed MM-IGLU-IT by translating
the English data from MM-IGLU into Italian and performing manual valida-
tion. This enabled the creation and assessment of multi-modal models in the
Italian language. Inspired by the approach of [5], which translated the Visual
Question Answering dataset into Italian, we utilized DeepL for the initial transla-
tion1. However, unlike [5], which validated only the test set, our process involved
manual validation of the entire dataset—including training, validation, and test
sets—by two annotators. This comprehensive validation ensured the integrity of
the data, reducing the exposure of models to synthetic data and enhancing the
overall quality of the training process.

Fig. 2. An example of visual rendering of the
environment, where the Instruction given by the
Human is “Break the green blocks” and the ex-
pected answer is “There are no green blocks,
which blocks should I break? ”.

Before completing validation,
we evaluated the translation qual-
ity using the well-known BLEU
scores [27] on the test set for
both user commands and clari-
fication questions. The BLEU-n
scores for the commands are, in
increasing lengths n of the tar-
get n-grams: 0.88, 0.83, 0.78 and
0.73, for n=1,2,3,4 respectively.
For the questions, the correspond-
ing scores are 0.95, 0.92, 0.48,
and 0.39. High BLEU-1 scores
suggest good overall translation
quality, but the decline in scores
with higher n-grams highlighted
the need for further corrections. This prompted a manual validation of all trans-
lations to ensure accuracy. Consequently, MM-IGLU-IT encompasses over 6,800
examples, as detailed in Table 1. Each example includes an image depicting
the arrangement and colors of blocks in the environment, accompanied by a
command. If the command is not executable given the configuration, an ex-
pected clarification statement from the robot is included. Similar to IGLU and
MM-IGLU, 13% of the examples require clarification. Furthermore, each Italian
example is aligned with the original image and the corresponding command in
English, supporting future cross-lingual research.

The main sources of error that were corrected include incorrect verb conju-
gations (e.g., "Rimuovete" → "Rimuovi"), rephrasing expressions (e.g., "Vista
a Nord" → "Guardando a Nord"), and fixing mistranslations (e.g., "Towel"

1 Source accessed in March 2024 at https://www.deepl.com/it/translator.
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Instructions Avg Len
Section #Exs #Clear #Amb C Q
Train 5, 530 4, 813 717 17.35 11.35
Val 615 531 84 16.39 10.79
Test 683 593 90 17.34 10.67

Table 1. Statistics of the datasets for total examples (#Exs), clear commands
(#Clear), ambiguous commands (#Amb), and average word length for commands (C)
and questions (Q).

→ "Asciugamano" instead of "Torre", i.e. "Tower"). For example, the English
word "block" was often mistranslated as "isolato" (i.e. city block) instead of
"blocco". Only about 1% of the commands were nonsensical, such as "Facing
north and green purple blocks will be destroyed" which was translated to "Ri-
volto a nord e blocchi verdi viola saranno distrutti" despite not being actionable.
We maintained ambiguous commands to highlight cases needing clarification
questions and test the robustness of the neural models. For instance, "Istruzione
non chiara, cosa vuoi che faccia?" translated from "The command is not clear,
what do you want me to do?". It is interesting to note that verbs like to destroy
were translated to Italian verbs distruggere, cancellare, or rimuovere, maintain-
ing a broader linguistic variability than the original dataset. This variability can
enhance an LLM’s robustness by minimizing overfitting to specific verbs and ac-
tions. Similar to [11], for each command in the test set that exhibits ambiguity,
we reassigned the same classification label of the original dataset specifying the
type of information that the command lacks, prompting the need for a clari-
fying question. These categories include: Block, indicating uncertainty about
which block the command refers to, e.g., "Which specific block do you mean?",
or Color, when clarification about the color of the block is required. We be-
lieve this categorization is very useful for understanding the need for additional
information, but for more details, we refer to [11].

Fig. 3. The LLaVA network architecture, as presented in [20]

LLMs for Multi-modal IGLU. To address the above multi-modal task, we
adopt the approach described in [11], utilizing the LLaVA framework [20]. This
model integrates visual information from images of the environment using an
image encoder like CLIP [29], with linguistic information using a Large Language
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Model (LLM) such as LLaMA2 Chat-13b [36]. The model processes commands
and generates textual outputs, such as "Posso eseguirlo." (in English "I can
execute it") if the command is executable, or a clarification request is needed,
otherwise.

In practice, LLaVA combines visual models with linguistic models using a
single-layer neural network called the Projector to align the visual model’s out-
put representation with the language model’s input representation. The archi-
tecture, illustrated in Figure 3, shows Xv as the image and Xq as the input
text. The Vision Encoder processes Xv to produce visual features Zv, which are
then projected by the Projection layer W to align with the language model’s
vector space, resulting in Hv. Simultaneously, the input text Xq is tokenized
and embedded into the language model, producing Hq. These aligned visual and
linguistic embeddings, Hv and Hq, are combined within the language model to
generate a coherent language response Xa. This alignment is crucial for effec-
tive communication between the language and vision components of the model,
enabling it to leverage both modalities effectively.

In this setup, the model is fine-tuned2 by taking as input the tuple:

⟨Introduction, Prompt, Image, Command⟩

The Introduction provides a contextual backdrop for the overarching task3:

In this virtual world reminiscent of Minecraft, you are a robotic entity equipped
with the ability to move freely, and place or remove blocks within the envi-
ronment. Imagine you are situated in the environment depicted in the image
provided. Your task is to determine whether you can execute a given command
based on the current configuration of the world. If you require additional in-
formation to carry out the command effectively, you should respond by asking
relevant clarifying questions, such as inquiring about block colors, quantities,
directions, or any other necessary details.

The IGLU tasks can be modeled into two modalities: classification and gen-
eration. In the classification modality, the agent determines whether a command
can be executed and responds with either “Yes” or “No”. In the generation task,
the agent generates a textual response to indicate whether the command can be
executed and, if not, produces a clarification question. While these tasks only
affect the Prompt, they could lead to two separate datasets. The Prompt element
delineates the specific subtask at hand. For the classification task, it states:

Respond with ‘Yes’ if you can execute the command, or ‘No’ if additional
information is required.

For generation tasks, the prompt is:
2 Initially, this model was tested in a zero-shot manner but it resulted in unstable

outcomes, often leading to hallucinated answers. While most sentences generated
were sensible, they typically failed to show an understanding of the need to perform
actions within the environment, often miscounting blocks.

3 All the following texts are translated in Italian when used in the model.
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Answer with ‘I can execute it’ if the command is executable, or pose a pertinent
clarifying question if further details are needed.

The Image token serves as a placeholder that the vision encoder subsequently
replaces with Xv. Meanwhile, the Command represents the robotic directive. Thus,
Xq is the concatenation of Instruction, Prompt and Command.

The model’s output Xa conforms to a “Yes/No” structure for classification, or
it produces the direct question for generation tasks or, again, the affirmative re-
sponse “I can execute it”. Inspired by the recent findings in [10, 11], which demon-
strated the effective fusion of data from multiple tasks to guide the prompting
of an LLM, we have introduced the capability for multi-modal models to train
a single LLaVA model by combining data from both the classification and gen-
eration task prompts. This multi-task learning approach shows great potential,
as we expect, based on findings from [10], that the tasks will complement and
enhance each other’s performance. In particular, the generation task might see
improvements as the model implicitly specializes in the classification task. From
a practical standpoint, it simply requires merging the training datasets generated
from both modalities and ad hoc instructions.

In [11], the language model was based on LLaMA2 Chat-13b4 with 13 billion
parameters. In this work, we use the same LLaMA2 Chat-13b, since it has been
partially trained on Italian data from previous versions, demonstrating high per-
formance in processing Italian texts [10]. This choice ensures better adaptability
and effectiveness for tasks in Italian, leveraging the strengths of both visual and
linguistic modalities in a multi-modal framework.

4 Experimental Evaluation

In this section, we evaluate the performance of the proposed architecture in
generating contextually grounded clarifications, providing insights into its un-
derstanding of instructions and its ability to identify missing information that
can be transformed into queries. We utilize the LLaMA2-chat model as a gener-
ative decoder for the robot’s responses, leveraging its multi-lingual capabilities
to investigate and compare performance when fine-tuned on tasks using English
or Italian data. Our analysis focuses on three main areas: Quality of Gener-
ated Answers, which assesses both the model’s decision to refrain from asking
questions and the nature of the questions it generates; In-Depth Error Analysis,
which examines the model’s limitations and areas of difficulty; and End-to-End
Question-Answer Generation, which explores the capability of a holistic sys-
tem to produce valid responses. Given the multi-lingual nature of the LLaMA
model, we test different language combinations between English and Italian.
Specifically, we compare the multi-modal model introduced in [11] and trained
on the English dataset (LLaMA2Chat-13b-EN) with the model trained using the
Italian dataset (LLaMA2Chat-13b-IT). This comparison allows us to assess the
impact of language-specific training on model performance. As in [11], the linear
4 https://huggingface.co/meta-llama/Llama-2-13b-chat-hf
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projector, initially derived from LLaVA’s release, was later completely re-tuned
to achieve slight improvements in convergence. The hyper-parameters remain
unchanged and are referenced in detail in that work.

Model name Tr. Lan Test Lan F1 Pos F1 Neg M-F1
LLaMA2Chat-13b-EN EN EN 96.43% 67.16% 81.80%
LLaMA2Chat-13b-EN EN IT 70.07% 24.29% 47.18%
LLaMA2Chat-13b-IT IT IT 97.81% 66.67% 82.24%

Table 2. The Classification performance is divided into F1 of the positive class (the
command is clear), F1 of the negative class (the command is ambiguous), and the
Macro F1 of the two. The evaluation is divided into the Language of Training (Tr.
Lan) and the Language of Testing (Test Lan).

Recognizing Ambiguous Commands. An interesting aspect of this evalua-
tion is testing the multi-modal model introduced in [11], trained on the English
dataset, on our Italian test set. This comparison helps us to understand whether
translating the data into Italian and re-training the model is necessary or if the
English-trained model, with the “emergent” capabilities of a multi-lingual LLM,
is sufficient. First, we evaluate the system’s ability to recognize ambiguous or
problematic commands where clarifications are needed (without assessing the
quality of these clarifications). We present results from various models applied
to two tasks: Classification (determining whether to respond with “Yes” or “No”)
as shown in Table 2, and Generation (where the generated text is "I can execute
it" or any clarification question) as shown in Table 3. Each model’s language
configuration, fine-tuned using the LLaVA framework, utilizes the same CLIP
visual encoder, which remained "frozen" during the fine-tuning process. Being
a binary classification task, we used Precision, Recall, and F1 metrics to eval-
uate the model’s ability to say “Yes” or “No”. The overall model performance
is measured using Macro-F1 scores. Observing the results in Table 2, which in-
cludes model responses in the form of Yes/No, the LLaMA2Chat-13b-EN model
reflects the results from [11] and is used as a reference. Its F1 Positive score
is 96.43% when asserting its ability to recognize commands consistent with the
environment. However, its performance decreases when ambiguous commands
need clarifications, resulting in an overall Macro-F1 of 81.80%. This is plau-
sible given the dataset’s imbalance, with only 13% of cases expecting a “No”.
Leveraging the multi-lingual capabilities of the LLaMA2 model, we validated its
behavior on Italian data without further tuning: performance dropped signifi-
cantly (Macro-F1 of 47.18%), highlighting the difficulty in identifying ambiguous
commands (F1 Neg is 24.29%). Nonetheless, this is an interesting result, as in
24.29% of cases, the system, likely inspired by some similarities between English
and Italian terms like “destroy”/“distruggere” or “blue”/“blu” and the common
vision model, manages to (rarely) respond correctly. Finally, a fairer evalua-
tion was conducted by assessing the model trained on Italian-translated data,
LLaMA2Chat-13b-IT, on the Italian test data: it is interesting to note that not
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only this model does achieve comparable quality to the English version in cor-
rectly identifying when a command is executable or ambiguous, but it shows also
a slightly higher Macro-F1. Moreover, the model’s quality in correctly identify-
ing an ambiguous command in the Italian test more than doubled compared to
its English counterpart (F1 Neg: 66.67% vs 24.29%). Finally, we evaluated the
models in a generation setup where the task is to produce a complete phrase,
either affirming the command or generating a clarification if the command is
ambiguous. Table 3 presents the results for this task. The LLaMA2Chat-13b-EN
model, trained and tested in English, shows an F1 Positive score of 93.95%
and an F1 Negative score of 47.89%, resulting in a Macro-F1 of 70.92%. This
model serves as our baseline. When the same model is applied to the Italian
test set without any further tuning, its performance drops significantly, with an
F1 Positive score of 70.01%, an F1 Negative score of 0.00%, and a Macro-F1
of 35.00%. This indicates that the model struggles significantly with ambigu-
ous commands in Italian, often failing to generate appropriate clarifications and
instead defaulting to incorrect responses. In contrast, the LLaMA2Chat-13b-IT
model, fine-tuned on the Italian dataset, performs comparably to the English
baseline on the Italian test set. It achieves an F1 Positive score of 93.62% and
an F1 Negative score of 44.16%, resulting in a Macro-F1 of 68.89%. In general, a
model trained solely on Yes/No responses appears more effective in recognizing
this specific task, suggesting, as in [11], that an effective system should still use a
multi-step approach: first, determine if the command is ambiguous, and second,
generate the necessary clarification if the command is recognized as ambigu-
ous. In summary, the results indicate that while the LLaMA2Chat-13b model
trained in English can somewhat handle Italian data due to its multi-lingual
capabilities, its performance is mostly divergent and it is significantly enhanced
when specifically fine-tuned on the Italian dataset. This underscores the impor-
tance of localized training for achieving high performance in different languages,
demonstrating the necessity and effectiveness of our MM-IGLU-IT dataset.

Model name Tr. Lan Test Lan F1 Pos F1 Neg M-F1
LLaMA2Chat-13b-EN EN EN 93.95% 47.89% 70.92%
LLaMA2Chat-13b-EN EN IT 70.01% 0.00% 35.00%
LLaMA2Chat-13b-IT IT IT 93.62% 44.16% 68.89%

Table 3. The Generation performance is divided into F1 of the positive class (the
command is clear), F1 of the negative class (the command is ambiguous), and the
Macro F1 of the two.

Evaluating the Generated Clarifications. To evaluate the quality of the
generated clarifications, we used the same approach as in [11]. Instead of mea-
suring the quality of generations in terms of exact accuracy or BLEU scores, we
isolated 90 instances where requests were generated: we assessed them using the
Relaxed Accuracy metric. This metric determines the percentage of cases where,
despite deviations from the original, the generated questions effectively addressed
the ambiguity. If the generated query resolved the ambiguity, it was deemed cor-
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Category LLaMA2Chat-13b-IT LLaMA2Chat-13b-EN
Block 30.00% 60.00%
Vertical-Horizontal 50.00% 70.00%
Number 66.67% 55.56%
Square 62.63% 65.79%
Color 33.34% 66.67%
Direction 60.00% 80.00%
Block Missing 27.28% 54.55%
Complete 97.63% 97.11%

Overall 92.34% 93.24%
Table 4. The categories of “missing” information in the command identified in this
work. Each category is described by a question example. A Relaxed Accuracy is com-
puted for each category on the test set.

rect; otherwise, it was incorrect. Building on the categorizations introduced in
the original MM-IGLU [11], we further analyzed the system’s effectiveness in ad-
dressing specific missing information classes. In Table 4, Relaxed Accuracy values
for LLaMA2Chat-13b-IT are reported along with those for the original English
model (LLaMA2Chat-13b-EN), divided by the meta-categories of the questions
introduced in the original paper [11]. The results indicate that in both cases, the
system achieves a Relaxed Accuracy between 92.34% and 93.24%. These com-
parable results highlight the utility of MM-IGLU-IT, demonstrating that over
90% of the agent’s requests help the hypothetical human user understand what
information is missing.

Score Utility Fluency
1 Incorrect classification Not Italian or random Italian words

2 The clarification suggests awareness of
the task but misses some key aspects Italian with grammatical errors

3 Perfect Perfect
Table 5. Scores for the Utility and Fluency metrics from 1 to 3, where both need to
be maximized.

To better understand the utility and naturalness of the generated clarifi-
cation requests, we enlisted two (human) external annotators unfamiliar with
the project’s specifics. They received both system-generated and gold-standard
examples requiring clarifications, without any indication of the source, shuffled
in a random order. Each annotator rated the clarifications on two dimensions:
Utility and Fluency. Utility was scored between 1 and 3 based on the guidelines
in the second column of Table 5, capturing the effectiveness of the clarification.
Fluency was scored between 1 and 3 based on the criteria in the third column
of Table 5, assessing the quality of the Italian writing5. The results, presented
5 The inter-annotator agreement was judged to be very good, with a Pearson correla-

tion of 0.81 for Utility and 0.83 for Fluency.
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in Table 6, show that the LLaMA2chat-13b-IT model achieved the highest Util-
ity score of 2.79 (out of 3), reflecting its ability to generate relevant questions
and address important missing information, albeit with occasional inaccuracies.
In terms of Fluency scores, all models performed very well: 2.98 for the Gold
Standard annotation and 2.99 for the LLaMA2chat-13b-IT model. The generated
clarifications are straightforward enough to appear even more useful than those
suggested by the original annotators. For example, for the command “Distruggi 1
blocco e mettine altri 3 in fila”6, the expected output is simply “Distruggere quale
blocco? ”7, while our LLaMA2-chat-13b-IT model produces a much more com-
prehensive question, addressing all crucial points (missing information): “Quale
specifico blocco devo distruggere e quale colore/posizione/direzione deve avere la
fila di 3 blocchi? ”8.

Dataset Language Utility Fluency
Gold standard EN 2.16 2.91
LLaMA2Chat-13b-EN EN 2.73 2.99

Gold standard IT 2.69 2.98
LLaMA2chat-13b-IT IT 2.79 2.99

Table 6. Utility and Fluency results for the Gold Standard and the Multi-Modal model
(LLaMA2chat-13b-IT).

5 Conclusions

In this paper, we addressed the complexities of Interactive Grounded Language
Understanding (IGLU) within the scope of Human-Robot Interaction (HRI). Our
investigation focused on the robot’s ability to comprehend and execute user in-
structions, particularly in scenarios with ambiguities or incomplete information.
Leveraging the existing MM-IGLU resource, which aims to bridge gaps between
user intent and robot understanding, we expanded its applicability to the Italian
language. This involved translating and manually validating both commands and
clarification questions to ensure accuracy. Our contribution lies in adapting the
MM-IGLU resource to Italian and demonstrating that pre-training on English
data alone is insufficient for optimal performance. The study showed that fine-
tuning the model on Italian commands significantly enhances its effectiveness,
underscoring the necessity of language-specific training for multi-modal models.
Future research should explore the transition from controlled, synthetic envi-
ronments to more dynamic and realistic settings. While current computer vision
techniques provide robust tools, real-world scenarios pose unique challenges that
need addressing. Additionally, evaluating large-scale Multi-Modal LLMs, such as
GPT-4, in zero-shot learning scenarios could yield valuable insights.
6 In English “Destroy 1 block and build another 3 in a row ”
7 In English “Destroy which one block? ”
8 In English “Which specific block should I destroy, and what color/direction/position

should the three-block row be? ”
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