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Abstract. Open Set Recognition (OSR) addresses the challenge of clas-
sifying inputs into known and unknown categories, a crucial task where
labeling is often prohibitively expensive or incomplete. This is partic-
ularly vital in applications like Network Intrusion Detection Systems
(NIDS), where OSR is used to identify novel, previously unknown at-
tacks. We propose a neuro-symbolic integration approach that combines
deep learning and symbolic methods, enhancing deep embedding for clus-
tering with custom loss functions and leveraging XGBoost’s decision tree
algorithms. Our methodology not only robustly addresses the identifica-
tion of previously unknown attacks in NIDS but also effectively manages
scenarios involving covariance shift. We demonstrate the efficacy of our
approach through extensive experimentation, achieving an AUROC of
0.99 in both contexts. This paper presents a significant step forward in
OSR for network intrusion detection by integrating deep and symbolic
learning to handle unforeseen challenges in dynamic environments.

Keywords: Neuro-symbolic Integration · Deep Embedding for Cluster-
ing · XGBoost · Open Set Recognition · Network Intrusion Detection

1 Introduction

Machine learning systems are commonly trained under the closed-world assump-
tion, where it is presumed that every test class corresponds to a training class
[16,13,23]. There has been a concerted effort to augment the ability of these
systems to recognize and disregard unknown inputs. This effort has been par-
ticularly pronounced in the domains of anomaly detection, out-of-distribution
(OOD) detection, and open set recognition (OSR). Traditionally, the focus was
more on anomaly detection, but recent shifts have prioritized OOD detection
and OSR. The fundamental differences between OOD detection and OSR are
twofold: firstly, OOD detection involves a greater semantic gap between data
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considered outside and within the distribution. Conversely, OSR deals with clas-
sifying subsets of data as either within or outside the distribution in the same
dataset. Secondly, unlike OOD detection which primarily differentiates between
external and internal samples, OSR also assesses classification efficacy on known
classes within a closed-world setup [30]. As delineated in [28], a distinction is
made between semantic shift and covariate shift. Semantic shift pertains to OOD
samples emanating from different classes, whereas covariate shift relates to sam-
ples originating from varying domains.

A pertinent example of an OSR challenge is the detection of previously un-
known attacks facing by Network Intrusion Detection Systems (NIDS). Our pro-
posed solution, TEX-DEC, integrates Deep Embedding for Clustering (DEC)
[27] with XGBoost [7] to address this. DEC extracts pertinent features and clus-
ters them to form a condensed latent space, while XGBoost is utilized to identify
novel samples within this space. Notably, our approach employs a neuro-symbolic
methodology, merging neural network-based deep learning with symbolic tech-
niques that process data representations symbolically. This fusion enhances the
system’s adaptability and robustness, enabling it to tackle the diverse and com-
plex challenges presented by OSR effectively. We implemented TEX-DEC in
identifying previously unknown attacks in NIDS and in recognizing handwritten
images, achieving an impressive AUROC of 0.99 in both applications.

The remainder of this paper is structured as follows: Section 2 reviews rele-
vant literature and prior work concerning OSR and NIDS. Section 3 elucidates
key concepts crucial for a comprehensive understanding of our methodology. The
details of our proposed approach are elaborated in Section 4. Section 5 describes
the experimental setup, datasets used, and the results obtained. An ablation
study examining our custom loss function is discussed in Section 6. Finally, Sec-
tion 7 provides our concluding thoughts and findings.

2 Related Work

Recent advancements in machine learning have significantly enriched the re-
search landscape of OSR. OSR methodologies, pivotal in scenarios with an
open-ended or evolving set of possible classes, are generally bifurcated into dis-
criminative and generative approaches [9]. Discriminative models, such as those
discussed by Scheirer et al. [25], Hassen and Chan [11], and Bendale et al. [4],
utilize probability- or learning-based techniques to distinguish known from un-
known classes. Conversely, generative models, exemplified by the works of Neal
et al. [22] and Ge et al. [8], deploy generative techniques to identify OSR samples.

Scheirer et al. [25] introduced the Compact Abating Probability (CAP) model,
which reduces the probability of class membership as samples diverge from train-
ing data towards open space, demonstrating successful application in OSR sce-
narios. Bendale et al. [4] expanded upon this with OpenMax, incorporating Ex-
treme Value Theory (EVT) to build a CAP model for each class, enhancing
robustness by rejecting unknown inputs via thresholding. Although not primar-
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ily focused on adversarial inputs, OpenMax exhibits superior resilience compared
to traditional softmax models.

Hassen and Chan [11] explored intermediate representations to create a spa-
tial distinction where samples from the same class are clustered together while
distinctly separating different classes, enabling the identification of unknown ex-
amples through Euclidean distance and predefined thresholds. Neal et al. [22] em-
ployed generative adversarial networks to create examples mimicking the train-
ing set yet belonging to no known category, training OSR models with these
synthetic samples. Ge et al. [8] introduced Generative OpenMax (G-OpenMax),
extending OpenMax capabilities to better detect unknown samples.

In our work, we adopt a methodology resonating with the approach of Hassen
and Chan [11], enhancing it with a clustered latent space and XGBoost to aug-
ment both performance and robustness. Notably, the use of XGBoost obviates
the need for threshold-based classification of unknown examples.

The NIDS domain, predominantly using known datasets for attack classifi-
cation [15,2,3], faces challenges in detecting previously unknown attacks. Tradi-
tional anomaly-based methods, which rely on deviations from normative behav-
ior and typically require network flow data, necessitate additional information
[24,14,1,29]. Addressing these challenges, we propose a novel DEC and XGBoost
approach for packet-level detection of previously unknown attacks, comparing
its efficacy against existing packet-based and flow-based systems [19,29].

3 Background

In this section, we provide an overview of key concepts that are needed to under-
standing our proposed approach. Specifically, we introduce DEC and XGBoost.

3.1 Deep Embedding for Clustering

Cluster analysis holds a crucial role in machine learning and data mining. Deep
clustering refers to a set of techniques that combine deep learning with tradi-
tional clustering algorithms. Unlike conventional clustering methods, that rely
on handcrafted features or distance metrics, deep clustering leverages the rep-
resentation learning capabilities of DNNs to automatically learn feature repre-
sentations directly from raw data. Deep clustering takes the feature extraction
prowess of deep neural networks to autonomously acquire richer and more repre-
sentative data representations. This methodology handles high-dimensional and
intricate datasets, making it especially suited for scenarios where the inherent
structure of the data is not known. By employing gradient-based optimization
methods, DNNs can be trained to enhance cluster homogeneity while simulta-
neously maximizing inter-cluster heterogeneity. The outcome is a resilient and
adaptable clustering approach effective on different datasets sourced from vari-
ous origins and domains.

This study builds upon DEC [27], which employs DNNs to simultaneously
learn feature representations and cluster assignments. This is achieved by map-
ping the data space to a low-dimensional feature space and iteratively optimizing
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a clustering objective. DEC comprises encoders responsible for acquiring a latent
representation, coupled with a cluster layer. This cluster layer generates a soft
assignment q for each sample, reflecting the likelihood of its membership in each
cluster. Loss is defined as the Kullback-Leibler (KL) divergence between the soft
assignment q and a target distribution p. DEC initially pre-trains the encoder
part of the network using the autoencoder (AE) framework. The purpose is to
initialize the weights and significantly reduce the effort required to achieve the
clustering objective. A Cluster layer is appended to the end of the encoder to
generate the soft assignments. The Cluster layer incorporates centroids as a pa-
rameter and uses the output of encoder, z, as an input, subsequently calculating
the soft assignment in the manner described in Equation 1.

As mentioned above, DEC training is done in several phases, first an AE
is pretrained to initialize the parameters. Alternatively, DEC can be trained
from scratch, but this requires more effort in terms of training epochs. The
AE learns a latent representation that naturally facilitates identifying clustering
representations with DEC. The feature space of AE is used as the starting point
for training DEC. The algorithm k-means is applied to initialize the centroids.
After using the AE encoder as the basis for DEC, a clustering layer was added.
Both centroids and parameters of encoder, Θ, are now trainable parameters, and
Stochastic Gradient Descent (SGD) can be used to learn the feature space and
its clustering representation. In [27], the authors used a KL divergence to train
the neural network.

In the first step, a soft assignment between the embedded points and cluster
centroids is computed using Student’s t-distribution [18] as a kernel to measure
the similarity between the embedded point zi and the centroid µj ; in this way we
can get the probability qij that sample i is assigned to cluster j (soft assignment).

qij =

(
1 + ∥zi − µj∥2 /α

)−α+1
2

∑
j′

(
1 + ∥zi − µj′∥2 /α

)−α+1
2

(1)

where α is the number of degrees of freedom of the Student’s t-distribution, we
let α = 1 for all experiments in accordance with [27].

The second step involves updating both cluster centroids and deep mapping
fΘ parameters by learning from the current high confidence assignments using
an auxiliary target distribution. In other words, the loss is obtained by a KL
divergence between q and p, where p is a target distribution defined as follows:

pij =
q2ij/fj∑
j′ q

2
ij′/fj′

(2)

Here fj =
∑

i qij is the soft cluster frequency. For more details about target and
soft assignment please refer to [27]. So, we can use KL divergence as the loss to
train the network.
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Lkld = KL(P∥Q) =
∑
i

∑
j

pij log
pij
qij

(3)

3.2 Extreme Gradient Boosting

XGBoost [7] is a ensemble learning algorithm. Based on the gradient boosting
framework, XGBoost constructs a sequence of decision trees, with each subse-
quent tree aiming to correct the errors made by the previous ones. By iteratively
refining the predictions of weak learners, XGBoost effectively captures complex
relationships between input features and target variables, leading to high pre-
dictive performance and robust generalization capabilities. XGBoost uses classi-
fication and regression trees (CART) as weak learners. Trees try to complement
each other. Mathematically, we can write our model in the form:

ŷi =

K∑
k=1

fk (xi) , fk ∈ F (4)

where K is the number of trees, fk is a function in space F , and F is the set of
all possible CARTs.

The objective function to be optimized is given by the sum of the losses
l(yi, ŷi) for all examples plus the sum of the tree complexities ω(fk). The latter
is used as a regularization term computed on the basis of the number of leaves
and the scores assigned to the leaves. More details can be found in [7].

We used XGBClassifier with optimization for logistic regression, designed to
handle binary classification tasks. XGBClassifier optimizes the logistic regression-
specific loss function and uses the logistic activation function to produce pre-
dicted probabilities. In addition, XGBoost is known for its ability to efficiently
handle problems with large data sets and high data sizes due to its highly efficient
implementation and ability to take advantage of computational parallelization.

In conclusion, XGBoost is a powerful machine learning algorithm that com-
bines gradient boosting with decision trees to obtain accurate and generalizable
predictive models. With built-in regularization techniques such as tree pruning
and column sampling, the model is able to avoid overfitting to training data,
ensuring good generalization to new instances.

3.3 Contrastive Learning

Contrastive learning [10] is a self-supervised learning technique that aims at
learning useful representations by maximizing the agreement between similar
samples and minimizing the agreement between dissimilar ones. By encouraging
similar samples to be closer together and dissimilar samples to be farther apart
in the learned representation space, contrastive learning enables the discovery of
semantically meaningful features that capture underlying patterns in the data.
This makes contrastive learning particularly well-suited for tasks such as repre-
sentation learning, feature extraction, and unsupervised feature learning.
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4 Proposed Method

Let D be a dataset comprising pairs (x, y), where x ∈ X and y ∈ C. Here, X
represents the input space and C represents the label set. D is divided into a
training set, Dtr, and a test set, Dtest. Additionally, we define two subsets of C:
Ck, containing the known classes, and Cu, containing the unknown classes. The
objective is to construct a function f : X → {known, novelty} that assigns each
input x to one of two categories: known if y ∈ Ck, and novelty if y ∈ Cu.

We propose Tree EXtreme Gradient Boosting with Deep Embedding for Clus-
tering (TEX-DEC) exploits DEC and XGBoost, as shown in Figure 1.

DEC

AE Cluster 
Layer

Input

Latent 
Representation

Classifier Classifier Classifier…

XGBoost

Soft assignment

Known Novelty

Fig. 1. DEC first extracts the latent representation and performs soft assignment.
XGboost then uses the latent representation to detect Known and Novel sample.

We segmented the dataset D into three categories: Known, Novelty 1, and
Novelty 2, as illustrated in Figure 2. We denote by Novelty 1 and Novelty 2
respectively the examples of novelty classes used for training the XGBoost model
and the examples of novelty classes reserved exclusively for the testing phase.
The Known subset is divided into three parts: one for training DEC, the second,
along with Novelty 1, for training XGBoost, and the last, along with Novelty
2, for test TEX-DEC. One Novelty 2 class is used at a time, allowing for the
training of a separate XGBoost model for each class using a one-vs-all approach.
For instance, if we have classes A, B, and C as novelty, we train three separate
XGBoost models, one for each class. Each model uses only one class as Novelty
2. For example, if the test class Novelty 2 is A, the remaining classes (B and C )
are treated as Novelty 1.

4.1 Deep Embedding for Clustering

We leverage contrastive learning to enhance the distinctiveness of clusters ob-
tained through DEC. By harnessing the complementary strengths of contrastive
learning and traditional clustering techniques, we seek to achieve more effective
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Fig. 2. The dataset is divided into three subsets: Known, Novelty 1 and Novelty 2.
The known subset is used to train DEC. A latent representation (LR) is obtained from
each of the three subsets (note: DEC parameters are not changed at this stage). These
LRs are then used to train (Known and Novelty 1 ) and test (Known and Novelty 2 )
an XGBoost classifier for sample classification.

data representation and clustering performance in our proposed approach. Our
contribution is the addition of a contrastive loss and classification loss to the
KL divergence used in DEC. This aids the second part of the architecture in
distinguishing between novel and known samples. Below, we describe the loss
components used for training.

– KL Divergence: as DEC, see Section 3.1, Equations 1, 2 and 3.
– Contrastive Loss: We calculate the average Cdistance of the Euclidean dis-

tance between each pair of centroid as follows:

Cdistance =

∑
i,j ∥µi − µj∥2
k(k − 1)

(5)

where k is the number of clusters. This loss measures the mean Euclidean
distance between cluster centroids, rather than focusing on individual sample
pairs as in traditional contrastive losses [10]. To our knowledge, this specific
formulation is novel. The contrastive loss we use is then:

Lcontrastive =
1

Cdistance
=

k(k − 1)∑
i,j ∥µi − µj∥2

(6)

The aim of this loss is to increase the distance between the centroids.
– Classification Loss: Since the clusters should accurately represent the actual

classes of known samples. We used the Cross Entropy loss (LCE), define as
follow:

LCE = − 1

N

i=N∑
i=1

yi · log (ŷi) (7)

where ŷi and yi are the predicted and real labels, respectively.

The final loss is then:

L = α · Lkld + β · Lcontrastive + ω · LCE (8)

The ablation study in Section 6 shows that each of the three terms is essential for
the performance of the system. α, β and ω are used as weights during ablation
study to analyze the impact of each loss component.
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4.2 XGBoost

After DEC creates a smaller latent representation of the input, XGBoost is
used to distinguish between known and novel instances, exploiting both known
instances and a small subset of novel examples for training. Notably, our dataset
is partitioned into three distinct sets: the first for training DEC exclusively
with known instances, the second for training XGBoost with a mix of known
and novel examples, and the third for testing, which is composed in a balanced
way of novel and known instances. Importantly, the novelty classes employed
in XGBoost training differ from those considered as novel in the final test set,
ensuring a consistent assessment of novelty detection performance.

5 Experiments

In this section, we present the results of our experiments conducted with TEX-
DEC using data described in Section 5.1. The outcomes of these experiments
are detailed in Section 5.2.

5.1 Datasets

The system is applied to the task of OSR in network intrusion detection using
the CIC-IDS2017 dataset [26]. As the field of NIDS is continually evolving, with
the detection of new types of attacks being crucial, as mentioned above, we
segmented the dataset into three categories: Known, Novelty 1, and Novelty 2.
We also test TEX-DEC using the classical MNIST dataset [5].

NIDS Datasets In domain of NIDS, we used the CIC-IDS2017 and UNSW-
NB15 datasets. The CIC-IDS2017 dataset, created by the Canadian Institute
for Cybersecurity in 2017, contains packet-based data in packet capture (PCAP)
format and flow-based data in CSV format. Both types of data were captured
during simulated network traffic in packet-based and bidirectional flow-based
formats, including the latest attacks and benign traffic. For our study, we used
only packet-based data. The dataset collects simulated traffic information for an
acquisition period of five days. The packet-based information in CIC-IDS2017 is
unlabeled, making it necessary to use the Payload-Byte tool [6] for the extraction
and labeling of network traffic packet capture files using the metadata provided in
the dataset. The tool uses the features described in PCAPs to match packets with
flow-based labeled data instances. Due to the variability in packet size, Payload-
Byte uses a maximum payload length of 1500 bytes, with each byte converted
into an 8-bit integer feature. Upon data labeling, any duplicate instances and
those devoid of payload data are eliminated. The dataset contains 14 different
types of attack and 1 benign class. The dataset was split as shown in Table 1.
Three attacks were chosen as novel as in [19], where the authors considered each
type of attack in turn as previously unknown, and identified these three attacks
as those that showed the greatest performance degradation in terms of detection.
Therefore, we also chose to use the same attacks as novelties.
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Class # sample Subset

Benign 3.328.591 Known

DoS Hulk 2.219.061 Known

DoS Slowhttptest 9.778 Known

Heartbleed 41.283 Known

Brute Force (Web Attack) 28.920 Known

Sql Injection (Web Attack) 45 Known

XSS (Web Attack) 6.767 Known

Bot 5.143 Known

PortScan 946 Known

DoS GoldenEye 34.293 Novelty 1

DoS slowloris 20.877 Novelty 1

DDoS 618.544 Novelty 1

SSH-Patator 181.147 Novelty 1 or 2

FTP-Patator 110.636 Novelty 1 or 2

Infiltration 41.725 Novelty 1 or 2
Table 1. The dataset split into Known, Novelty 1 & 2

The UNSW-NB15 dataset [21] is a NIDS dataset developed to identify nor-
mal and attack network traffic. The raw network packets were generated by the
Australian Centre for Information Security (ACCS) [20]. This dataset was pre-
processed in the same manner as the previous one. The Payload-Byte tool [6]
was applied to it. This dataset is used as a covariate to test the robustness of our
approach, even with datasets from different network configurations. The UNSW
dataset is used only during the testing phase and is labeled as Novelty 2.

MNIST dataset In our experimental evaluation, we also used the MNIST dataset
[5], a well-established benchmark comprising simple handwritten digits. MNIST
comprises ten classes representing numbers from 0 to 9. We partitioned this
dataset into three subsets: known, Novelty 1, and Novelty 2 : digits 0 through
4 were designated as known, while digits 5 through 9 were categorized as both
Novelty 1 and Novelty 2. During the testing phase, we employed a one-vs-all
strategy, wherein a single Novelty 2 class was utilized at a time, enabling the
training of individual XGBoost models for each class.

5.2 Results

As previously mentioned, we tested our approach on different datasets. DEC was
trained using different loss configurations, as discussed in Section 6. Addition-
ally, we conducted a grid search on the hyper-parameters of XGBoost, including
the number of components and maximum depth, to achieve optimal results. We
evaluated the models using the Area Under the Receiver Operating Characteris-
tic Curve (AUROC) because it proves effective in measuring the performance of
a binary classification model under various scenarios. AUROC provides a com-
prehensive assessment of the model’s ability to discriminate between positive
and negative classes, considering both sensitivity and specificity.
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For the CIC-IDS2017 dataset, we compared our results with those of [19]
and [29]. Specifically, we compared the AUROC for the Novelty 2 classes. Ad-
ditionally, we compared the AUROC for the UNSW-NB15 dataset with [19]. In
this case, we did not encounter a semantic shift, but rather a covariate shift. Es-
sentially, we had the same classes but from different datasets and thus different
distributions. The results, reported in Table 2, show a significant improvement
in the performance of our method compared to previous approaches. For in-
stance, in detecting the previously unknown Infiltration attack, we achieved an
AUROC of 0.9843, surpassing the performance of existing methods. Similarly,
our method exhibited an AUROC score of 0.9939 for the previously unknown
SSH-Patator attack, slightly outperforming [19] (0.9921) and significantly sur-
passing [29] (0.6787). In the case of the previously unknown FTP-Patator attack,
although our AUROC of 0.9950 is slightly lower than [19] (0.9957), it notably
outperforms [29] (0.7955). Moreover, when assessing the UNSW-NB15 dataset,
which was generated from an entirely different distribution than CIC-IDS2017,
our AUROC of 0.9939 surpassed the result reported by [19] (0.9583). This fact
underscores the robustness and generalizability of our methodology for detecting
novelty across different datasets. While the first three attacks are novel within
the same dataset, our method demonstrates high adaptability and detection
capability even on a completely different dataset like UNSW-NB15. This gen-
eralization ability instills confidence in the validity and utility of our approach
across a variety of real-world scenarios.

AUROC

Novelty Type Matejek et al. [19] Zavrak et al. [29] TEX-DEC

FTP-Patator 0.9957 0.7955 0.9950

Infiltration 0.9742 0.8965 0.9843

SSH-Patator 0.9921 0.6787 0.9939

UNSW-NB15 0.9583 - 0.9939
Table 2. The AUROC results of the methods for specified previously unknown attacks

For the MNIST dataset, during the training phase samples labeled as known
were used to train the DEC model, with the aim of establishing a robust repre-
sentation of these digits. Separate XGBoost models were trained for each number
within the Novelty interval (5, 6, 7, 8, 9) using a one-vs-all classification strategy.
This training process allowed the development of specialized classifiers to distin-
guish each novelty class from the normal class. The performance was compared
with AAE-II [12] and Isolation Forest [17], the latter two obtaining an AUROC
of 0.619, and 0.841, respectively. TEX-DEC achieved 0.935, which significantly
exceeded the results obtained in [12]. These results indicate the effectiveness of
our approach in detecting novel samples in the MNIST dataset.
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6 Ablation Study

As mentioned previously, our work relies on a loss function with three compo-
nents: KL divergence (Lkld), contrastive loss (Lcontrastive), and classification loss
(LCE). In this section, we investigate various configurations of this loss to achieve
the best results. To conduct this study, we partitioned the dataset consistently
and trained only one autoencoder for all configurations, ensuring a common
starting point for comparison. The loss function is described in Equation 8. We
set the weights α, β, and ω by considering all possible combinations of 0 and 1
to turn off individual loss components.

The results are presented in Table 3. Each cell in the table reports the AU-
ROC value for the specific configuration, along with the difference compared to
the optimal configuration (highlighted in bold).

α β ω SSH-Patator Infiltration FTP-Patator UNSW-NB15 Average

1 1 1 99.50 98.43 99.39 99.39 99.28

1 0 0 99.66 84.54 99.03 98.88 95.53

0 1 0 99.41 98.29 99.52 99.28 99.13

0 0 1 99.57 98.61 99.56 99.35 99.27

1 1 0 99.69 84.52 99.03 98.85 95.52

1 0 1 99.68 84.40 99.05 98.88 95.51

0 1 1 99.51 98.38 99.36 99.39 99.16
Table 3. The table displays the AUROC for the different test Novelty 2 : SSH-Patator,
Infiltration, FTP-Patator, and UNSW-NB15.

The results, summarized in Table 3, show discernible trends among different
configurations. In particular, configurations in which all loss components are
turned on (α = β = ω = 1) consistently produce AUROC values close to optimal
levels, underscoring the synergistic contribution of each component to overall
model performance levels. In contrast, configurations with the KL divergence
component active and one or more components at 0 (α = 1 and β = ω = 1 or 0)
show lower performance, particularly in the case of Infiltration, emphasizing the
indispensable role of each component in facilitating effective novelty detection.

Intermediate configurations, in which specific loss components are selectively
activated, reveal nuances about their respective contributions. They show how
the use of classification and contrastive loss lead to improved novelty detection.
Systematic exploration of loss function configurations provides valuable insights
into the interaction between individual components and their collective impact
on novelty detection performance. Such insights are critical in guiding the re-
finement and optimization of novelty detection systems, thereby advancing the
state of the art in novelty detection research.
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7 Conclusion

This research was primarily aimed at enhancing the robustness of machine learn-
ing by NIDS by improving the detection capabilities for previously unknown
attacks, a critical aspect of modern network security. As we navigate through
an era of rapidly advancing technological threats, the ability to identify novel,
complex attacks becomes imperative. The system presented in this paper, which
synergistically combines a neural component (DEC) with a symbolic component
(XGBoost), leverages the strengths of neural networks in feature extraction from
extensive data sets along with the robust decision-making capabilities of deci-
sion tree ensembles. This neuro-symbolic artificial intelligence approach not only
enhances the robustness and adaptability of NIDS but also contributes signifi-
cantly to the domain by improving the system’s ability to recognize and react to
new threats dynamically. Moreover, the integration of these technologies offers
improved explainability and the ability to discern complex relationships within
the input data, setting a foundation for addressing more intricate challenges in
network security. The effectiveness and innovative aspects of this approach are
underscored by its application to both previously unknown attack detection in
NIDS and scenario involving handwriting recognition, achieving a high AUROC
of 0.99 in both domains. This underscores the versatility and potential of our
approach to generalize across different types of data and applications, paving
the way for broader implementations in cybersecurity and beyond.
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