
An Extensive Empirical Analysis of
Macro-Actions for Numeric Planning

Diaeddin Alarnaouti, Francesco Percassi[0000−0001−7332−0636], and Mauro
Vallati[0000−0002−8429−3570]

University of Huddersfield, Huddersfield, United Kingdom
diaeddin.alarnaouti@hud.ac.uk

Abstract. Automated Planning is a pivotal field of artificial intelli-
gence, focusing on intelligent agents’ ability to generate action sequences
leading from an initial state to a desired goal condition. A well-known
technique to improve planning performance is based on macro-actions,
which can reduce search depth by merging multiple primitive actions
together, generating “shortcuts” in the search space. Macros have been
studied extensively in classical planning, but rarely in more expressive
formalisms.
In this study, we investigate macro-actions in numeric planning, for-
malising the macro generation process and exploring a semi-automated
methodology for selecting candidate primitive actions to be combined
into macro-actions. Our extensive experimental analysis demonstrates
the potential benefits of macros for numeric planning engines, providing
useful insights into their effectiveness for efficient plan generation.
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1 Introduction

Automated Planning is a prominent field of artificial intelligence, that focuses
on the capability of intelligent agents to generate sequences of actions whose
application, starting from a given initial state, would lead to a state where a
given goal condition is satisfied [15].

In domain-independent planning, the separation between planning knowledge
and reasoning supports the use of reformulation approaches [23]. These tech-
niques involve automatically re-formulating, re-representing, or adjusting the
planning knowledge [21, 25, 26, 30] to enhance the efficiency of planning engines
or to allow the use of different classes of solving approaches. In literature, there is
a substantial body of work on reformulation techniques, primarily focused on the
classical planning paradigm [1]. Among other reformulation techniques, macro-
actions are a well-studied approach, that aims to reduce the search depth by
merging actions together, to provide shortcuts in the search space [2, 6, 8, 9, 22].
Scala [27] proposed the most relevant work on macro actions in numeric plan-
ning. Still, the work focuses on macros for repairing plans, rather than macros
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that can boost the plan generation process. Given the positive performance im-
pact that macro techniques allow to achieve in classical planning, a promising
avenue for research is using macros in more expressive planning formalisms.

Given the recent renewed interest in numeric planning, both from a prac-
tical and theoretical point of view [5, 7, 16, 17, 19, 24, 28, 29], in this study, we
investigate macro-actions in the context of numeric planning. We formalise the
macro process generation in numeric planning, and introduce a semi-automated
methodology for selecting candidate primitive actions to be combined into macro-
actions. We introduce a categorisation of macros for numeric planning by ac-
counting for syntactical aspects, which can help shed some light on performance
and the expected impact of macros. Finally, we run an extensive empirical eval-
uation of macros in numeric planning to assess their impact on plan generation
performance.

2 Background

Traditionally, numeric planning tasks are described by means of Pddl2.1 [11].
A numeric planning task is a pair Π = ⟨D,P⟩ where D is a planning domain
model and P is a planning problem. D is a tuple ⟨F,X,A⟩ where F and X are
sets of Boolean and numeric functions returning values in B = {⊥,⊤} and Q,
respectively, and A is a set of lifted actions. Elements from F ∪X are referred to
as lifted functions. P is a tuple ⟨O, I,G⟩ where O is a set of objects, I is the initial
state, and G is the goal description. A function p ∈ F ∪X has arity k, and every
occurrence of p in Π features k arguments {v1, . . . , vk}, written as p(v1, . . . , vk).
Numeric functions can be combined to obtain mathematical expressions defined
as φ := φ+ φ | φ ∗ φ | x | q, where x ∈ X and q ∈ Q.

Let FO (XO) be the sets of all Boolean (numeric) variables formed from the
functions F (X) by substituting objects O in the functions’ arguments. Elements
from FO ∪ XO are referred to as grounded variables. A state s is a complete
assignment over the variables FO ∪ XO, mapping elements from FO to B and
from XO to Q. The initial state I is then a complete assignment over FO ∪XO.
The goal G is a partial assignment over FO ∪XO.

A lifted action a is a tuple ⟨par(a),name(a),pre(a), eff(a)⟩, where par(a)
is the set of arguments of a, name(a) is the unique identifier of the action,
pre(a) (preconditions of a) is a set of conditions, eff(a) (effects of a) is a set of
effects. pre(a) is partitioned in numeric and Boolean conditions, i.e., pre(a) =
prenum(a) ∪ preprop(a). A numeric condition in prenum(a) has the form ⟨φ ▷◁
0⟩, where φ is a mathematical expression defined over X and Q and ▷◁∈ {<
,≤,=,≥, >}. A Boolean condition in preprop(a) has the form p or ¬p where
p ∈ F . Similarly, the effects are partitioned into numeric and Boolean effects,
i.e., eff(a) = effnum(a) ∪ effprop(a). A numeric effect in effnum(a) has the form
⟨x := φ⟩ where x ∈ X and φ is a mathematical expression defined over X
and Q. A Boolean condition in preprop(a) has the form p or ¬p where p ∈ F . To
differentiate between positive and negative effects, we use eff+

prop(a) and eff−
prop(a),

respectively.
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Let AO be the set of all grounded actions formed from the lifted actions A by
substituting objects O for the parameter symbols in their preconditions and ef-
fects. This process produces grounded actions ⟨pre(a), eff(a)⟩ without arguments,
where pre(a) and eff(a) are defined over variables FO ∪ XO. All definitions of
lifted conditions, effects, and mathematical expressions defined over F ∪X can
be syntactically redefined for grounded variables.

Let s be a state, v a variable in FO ∪XO and φ a mathematical expression
defined over XO and Q, we denote with s[v] the value assumed by v in s, and
with s[φ] the evaluation of φ in s. A numeric condition c = ⟨φ ▷◁ 0⟩ is satisfied
by a state s, denoted s |= c, if and only if s[φ] ▷◁ 0 holds. Similarly, the Boolean
condition v (¬v) is satisfied if and only if s[v] = ⊤ (s[v] = ⊥). A state s satisfies
a set of conditions C, denoted s |= C if and only if

∧
c∈C s |= c. Applying a

grounded action a in a state s yields a new state s′ = γ(s, a) where:

s[v] =


⊤ if v ∈ eff(a), v ∈ FO

⊥ if ¬v ∈ eff(a), v ∈ FO

s[φ] if ⟨v := φ⟩ ∈ eff(a), v ∈ XO

s[v] otherwise (frame axiom)

An action is applicable in a state s if s |= pre(a), there are no conflicting
effects, i.e., more than one effect affecting the same variable differently, and the
result of each numeric effect s[φ] is well-defined. A plan π for Π is a sequence
of grounded actions, i.e., ⟨a1, . . . , an⟩. A plan π is valid for Π if each action is
iteratively applicable starting from I and the resulting state achieves G.

2.1 Example

To illustrate the concepts presented in the background, we will refer to a well-
known domain, namely Settlers [20]. We will focus on two actions that will
be used to demonstrate the generation of macro-actions.

Let O = {p1, p2} be a set of objects representing two places. We consider a
single Boolean function, parameterised by p, that indicates whether a coal stack
is present at place p, i.e., F = {has-coal-stack(p)}. Additionally, we use numeric
functions to track the available timber or coal at each location, as well as the over-
all pollution emitted or labour consumed, i.e., X = {timb(p), coal(p), poll, lab}.

We consider two lifted actions a1 and a2 to build a coal stack or to burn the
coal, respectively. Both actions are parametrised in p, i.e., par(a1) = par(a2) =
{p} and name(a1) = build-coal-stack and name(a2) = burn-coal. The precon-
ditions and effects of these actions are defined as:

pre(a1) = {⟨timb(p) ≥ 1⟩}
eff(a1) = {has-coal-stack(p), ⟨lab := lab+ 2⟩, ⟨timb(p) := timb(p)− 1⟩}
pre(a2) = {has-coal-stack(p), ⟨timb(p) ≥ 1⟩}
eff(a2) = {⟨timb(p) := timb(p)− 1⟩, ⟨coal(p) := coal(p) + 1⟩, ⟨poll := poll + 1⟩}.
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The grounded variables instantiated through the objects O = {p1, p2} are
FO = {has-coal-stack(p1), has-coal-stack(p2)} and XO = {timb(p1), timb(p2),
coal(p1), coal(p2), poll, lab}. To illustrate the grounding process for the lifted ac-
tions, we consider action a1 grounded using place p1. The resulting grounded ac-
tion is ap1

1 , where pre(ap1

1 ) = {⟨timb(p1) ≥ 1⟩} and eff(ap1

1 ) = {has-coal-stack(p1),
⟨lab := lab+ 1⟩, ⟨timb(p1) := timb(p1)− 1⟩}.

3 Generating Macro-Actions

This section describes how a pair of candidate lifted actions can be combined to
obtain an equivalent macro-action. We refer to the input actions as candidates
because two actions may not be combinable, for instance, if the first action
consumes a resource violating a precondition of the second one.

The generation of macro-actions in the numeric context must consider the
Boolean and numeric components. For the Boolean component, a standard ap-
proach from classical planning is used. On the other hand, the numeric compo-
nent is handled by adopting a technique from the work of Scala [27].

Algorithm 1 outlines the overall methodology. This algorithm takes two can-
didate actions, namely ai and aj , along with an identifier id that ensures the
generation of uniquely named macro-actions. The resulting macro-action, de-
noted as ai,j is obtained by separately combining the propositional and numeric
preconditions, as well as effects.

The parameters of ai,j are obtained by merging the parameters of the candi-
date actions, while the name is obtained by simply chaining the names of ai and
aj and the unique identifier id. The propositional precondition of ai,j is obtained
by merging the preconditions of ai and aj , from which the additive effects of ai
are removed. Specifically, these are removed because they may not hold before
applying ai.

The merging of numeric preconditions is accomplished using the procedure
MergeNumPrecs(·), the pseudocode of which is outlined in Algorithm 2. Specif-
ically, the numeric preconditions of ai,j are constructed by directly including all
the preconditions of ai in their original form. In contrast, the preconditions of
aj must be manipulated to account for the effects of ai. Specifically, the algo-
rithm iterates over all the numeric conditions ⟨φ ▷◁ 0⟩ ∈ pre(aj), and adds the
regressed condition ⟨S(φ, eff(ai)) ▷◁ 0⟩ to pre(ai,j). Here, S is a function that
substitutes each numeric function x appearing in φ with the right-hand side
expression of the numeric effect involving x in eff(aj). If there is no interaction
between eff(ai) and φ the substitution function returns φ untouched.

Similarly, for the effects, it is necessary to assemble the Boolean and numeric
effects of the two actions. For the former, the positive (negative) effects of ai,j
are obtained by merging the positive (negative) effects of the two actions, from
which the negative (positive) effects of aj are subtracted. The numeric effects
of ai,j are obtained using the procedure MergeNumEffs(·), the pseudocode of
which is provided in Algorithm 3. Intuitively, the effects of ai,j are obtained (i)
by adding all the effects of aj and projecting forward the effects of ai. (ii) All
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Algorithm 1 Generation of a numeric macro-action.
Input: A pair of actions ai, aj and a unique identifier id.
Output: A macro-action ai,j .
1: procedure GenerateMacro(ai, aj , id)
2: par(ai,j)← par(ai) ∪ par(aj)
3: name(ai,j)← name(ai) + “ + ” + name(aj) + “_” + id
4: preprop(ai,j)← (preprop(ai) ∪ preprop(aj)) \ eff+

prop(ai)
5: prenum(ai,j)←MergeNumPrecs(prenum(ai), prenum(aj))
6: pre(ai,j)← prenum(ai,j) ∪ preprop(ai,j) ▷ ai,j preconditions
7: eff−

prop(ai,j)← (eff−
prop(ai) ∪ eff−

prop(aj)) \ (eff+
prop(aj))

8: eff+
prop(ai,j)← (eff+

prop(ai) ∪ eff+
prop(aj)) \ (eff−

prop(aj))
9: effprop(ai,j)← pre+prop(ai,j) ∪ pre−prop(ai,j)

10: effnum(ai,j)←MergNumEffs(effnum(ai), effnum(aj))
11: eff(ai,j)← effnum(ai,j) ∪ effprop(ai,j) ▷ ai,j effects
12: ai,j ← ⟨par(ai,j), name(ai,j), pre(ai,j), eff(ai,j)⟩
13: return ai,j

14: end procedure

effects of ai that do not interfere with the effects of aj , and therefore have not
been projected forward through aj , must be added to the effects of ai,j .

Point (i) is handled by the first for loop. Each effect ⟨x := φ⟩ ∈ effnum(aj) is
added to the effects of ai,j by projecting the effects of ai using the substitution
function S. If ai does not interfere, the function returns φ unchanged.

Algorithm 2 Merging of numeric preconditions.
Input: A pair of numeric preconditions prenum(ai) and prenum(aj).
Output: A numeric precondition prenum(ai,j).
1: procedure MergeNumPrecs(prenum(ai), prenum(aj))
2: prenum(ai,j) = prenum(ai)
3: for ⟨φ ▷◁ 0⟩ ∈ prenum(aj) do
4: prenum(ai,j) = prenum(ai,j) ∪ {⟨S(φ, eff(ai)) ▷◁ 0⟩}
5: end for
6: return prenum(ai,j)
7: end procedure

4 Selecting Candidates

This section outlines the methodology for selecting candidates for macro-actions
in numeric planning, based on the algorithm described in the previous section.

The efficient generation of macro-actions is well-known to be extremely chal-
lenging, due to the potentially large number of possible combinations of actions.

Generating macro-actions efficiently is well-known to be extremely challeng-
ing, due to the potentially large number of possible combinations of actions to
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Algorithm 3 A pair of set of numeric conditions effnum(ai) and effnum(aj).
Input: ai and aj actions.
Output: A macro-action ai,j

1: procedure MergeNumEffs(effnum(ai), effnum(aj))
2: effnum(ai,j)← ∅
3: for ⟨x := φ⟩ ∈ effnum(aj) do
4: effnum(ai,j)← effnum(ai,j) ∪ {⟨x := S(φ, effnum(ai))⟩}
5: end for
6: for ⟨x := φ⟩ ∈ effnum(ai) s.t. φ does not interfere with effnum(aj) do
7: effnum(ai,j)← effnum(ai,j) ∪ {⟨x := φ⟩}
8: end for
9: return effnum(ai,j)

10: end procedure

be considered. For instance, when considering only pairs of actions to combine,
the number of candidates grows quadratically with respect to the number of
actions. For this reason, in this work, we initially explored possible macros for
each domain by partially adopting an approach used in classical planning [9, 10].
This approach generates macro-actions by analysing several plans and extract-
ing pairs or groups of actions that are promising candidates for combination.
Specifically, to select actions for creating effective macro-actions, we applied the
following conditions:

– Actions were identified to often occur sequentially in generated plans across
various problem instances, using different planning engines. This suggests
that these actions are likely needed to be used in sequence to achieve common
goals in the considered domain.

– There should be no conflicts between the preconditions and effects of can-
didate actions. In particular, the effects of the first action should not delete
preconditions of the following.

After selecting the candidate actions for each domain, the input for the Al-
gorithm 1 is ready.

The increased expressiveness of Pddl2.1 when compared to classical plan-
ning allows for a classification of generated macros based on a syntactic criterion.
We did this to investigate whether different kinds of macro-actions might have
varying experimental impacts. Specifically, we consider the following types:

– same numeric fluent (shortened as snf): this category includes all macro-
actions obtained by combining two primitive actions that share at least one
numeric fluent in their preconditions or effects;

– different numeric fluent (shortened as dnf): this category includes all macro-
actions in which the two primitives involve at least one numeric variable, and
these variables do not overlap;

– propositional (shortened as prop): this category includes all macro-actions
in which at least one of the two primitives has no numeric component.
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It is worth to remind that the most intuitive class to consider is snf, as it
represents macro-actions formed by combining actions that share at least one
numeric variable and are therefore believed to be useful in a numeric setting.

For our investigation, we consider well-known numeric domains: Depots,
Rovers, Settlers, TPP, and ZenoTravel. These domains are taken from
different editions of the International Planning Competition (ipc). Specifically,
Depots is from the second ipc [3]; Rovers, Settlers, and ZenoTravel are
from the third ipc [20]; and TPP is from the fifth ipc [14]. In the following,
we provide a brief description of each domain, followed by a description of the
macro-actions that were derived from the original formulation, classifying them
by type.

Depots The domain focuses on actions involving loading and unloading trucks
using hoists fixed at specific locations. The loads are crates, which can be stacked
and unstacked onto pallets available at these locations. Trucks hold crates flexi-
bly, allowing crates to be rearranged as needed. The trucks can be moved between
locations, to deliver packages to specific depots. The numeric version includes
weight attributes for crates and weight capacities for trucks, with fuel consump-
tion needing to be minimised during travel and crate handling.

The actions in many plans often follow a similar pattern, with lift and load
complementing each other, as well as unload and drop. Driving the truck to
the required locations can occur before or after these actions. The macro-action
lift+load is classified as dnf because the first action involves the fuel-cost
variable, while the second action involves the current_load variable. The macro-
action unload+drop is classified as prop because drop is a pure propositional
action. Additionally, we consider a macro-action obtained by sequencing three
actions, i.e., lift, load, and drive. This macro-action is classified as snf as lift
and drive share the fuel-cost variable.

Rovers Inspired by planetary rover problems, this domain involves navigating
a planet’s surface, collecting samples, and communicating findings to a lander.
Some rovers can only traverse specific terrains, and data transmission requires di-
rect visibility between waypoints and the lander. The numeric component of the
domain introduces energy consumption for rover activities and allows recharging
only in sunlight, emphasising efficient energy management.

According to our methodology, firstly, we combined the actions calibrate and
take_image. We observed that whenever calibrate is used in any generated plan,
the action take_image always follows for the same objects because the camera
must be calibrated before use. This macro-action is classified as snf because the
calibrate action involves energy both in its preconditions and effects, and the
same applies to the take_image action.

Secondly, we combined the actions sample_soil and sample_rock with drop.
In both instances, the sample action should be followed by the drop action to
ensure that the rover’s storage is empty and available for other operations. These
macros are classified as prop since drop is a propositional action.
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Settlers Due to the numerous actions available in this domain, it is particu-
larly well-suited for exploring macro-actions. The analysis of the plans generated
for settlers resulted in 16 macro-actions, covering the snf and dnf classes, each
with the same number of actions (see Table 1 for details).

TPP The Traveling Purchaser Problem (TPP) is an extension of the Travel-
ing Salesman Problem. It involves selecting markets to buy a set of products,
minimising both travel and purchase costs. Each market offers products at dif-
ferent prices and limited quantities. The numeric version features three opera-
tors, two of them, buy-all and buy-allneeded, handle purchasing actions. The
buy-all operator buys all available goods of a specific type at a market, while
the buy-allneeded operator buys only the remaining amount needed to meet
the purchase goals. In this model, all markets are interconnected and linked to
depots. There is one depot and one truck available for transportation.

In most generated plans, the action drive consistently precedes the actions
buy-all and buy-allneeded. The two resulting macro-actions are thus classified
as snf since they involve distinct numeric variables. Specifically, both actions
involve the total-cost variable, but even other variables.

ZenoTravel This domain revolves around transportation, utilising planes to
carry passengers through two modes: fast movement, called zoom, and slow move-
ment, called fly. In the numeric formulation, aircraft fuel consumption varies
based on the mode of travel. Each plane is characterised by its unique fuel con-
sumption rate and passenger capacity.

Analysing a multitude of plans, we have observed that the board action is
typically followed by either fly or zoom. This makes sense since passengers are
boarded to be transported. Similarly, the fly and zoom actions are always followed
by debark. All of these macro-actions involve different numeric variables and are
therefore classified as dnf.

Table 1: Summary of all the macro-actions generated in the domains.
Domain Macro Class

snf dnf prop
Depots lift+load+drive lift+load unload+drop
Rovers calibrate+take_image na sample_soil+drop,

sample_rock+drop

Settlers

load+move-cart,
move+cart-load,

move+cart-unload,
b-cabin+fell-timber,
b-quarry+break-stone,
b-coalstack+burn-coal,
b-sawmill+saw-wood,
b-docks+b-wharf

load+move-train,
load+move-ship,
move+train-load,
move+ship-load,

move+ship-unload,
b-mine+mine-ore,

b-ironworks+make-iron,
b-docks+b-wharf

na

TPP drive+buy-all,
drive+buy-allneeded na na

ZenoTravel na board+fly, board+zoom
fly+debark, zoom+debark na
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4.1 Example

In this example, we analyse the generation of an snf macro-action by refer-
ring to the Settlers example using Algorithm 1. We combine the actions a1
(build-coal-stack) and a2 (burn-coal).

The two involved actions share the same parameter p representing a place,
then par(a1,2) = {p}. Given a unique identifier id = “1”, we combine the names
of a1 and a2 obtaining name(a1,2) = build-coal-stack+burn-coal_1.

As for the Boolean preconditions, note that the only Boolean condition of
a2 is has-coal-stack(p) ∈ preprop(a2). However, has-coal-stack(p) ∈ eff+

prop(a1).
Then, by Line 4 of Algorithm 1, we obtain pre(ai,j) = (preprop(a1)∪preprop(a2))\
eff+

prop(a1) = (∅ ∪ {has-coal-stack(p)) \ {has-coal-stack(p)}} = ∅.
As for the numeric preconditions, note that there is an interaction between

the effect e = ⟨timb(p) := timb(p) − 1⟩ ∈ effnum(a1) and the condition c =
⟨timb(p) ≥ 1⟩ ∈ prenum(a2). Therefore the formula involved in the condition
c, i.e., timb(p) − 1, must be regressed considering the effect e. By applying the
substitution function as Line 4 from Algorithm 2, i.e., S(timb(p)−1, {timb(p) :=
timb(p)− 1, . . .}) = timb(p)− 2, we obtain the numeric condition ⟨timb(p) ≥ 2⟩
to be added to prenum(ai,j). This condition reflects that a2 requires one unit of
fuel and, since a1 consumes one unit, their sequential execution requires at least
two units of fuel.

As for the Boolean effects, the only effect to be added to the effects of ai,j
is has-coal-stack(p) ∈ effprop(a1) as it is not negated by a2. By applying Line 8
of Algorithm 2, we obtain eff+

prop(ai,j) = (eff+
prop(a1) ∪ eff+

prop(a2)) \ eff
−
prop(a2) =

({has-coal-stack(p)} ∪ ∅) \ ∅ = {has-coal-stack(p)}. Since there are no negated
effects we have that eff−

prop(a1,2) = ∅ and then effprop(a1,2) = {has-coal-stack(p)}.
As for the numeric effects, note that the only effects to be combined are

those concerning the available timber. In contrast, all others can be merged
without further manipulations as no interactions exist among them. Specifically,
the right-hand-side effect ⟨timb(p) := timb(p)−1⟩ ∈ effnum(a2) must undergo the
substitution function to take into account the effect of a1 affecting timb(p). Then,
by applying Line 4 of Algorithm 3, i.e., S(timb(p)−1, effnum(a1)) = S(timb(p)−
1, {timb(p) := timb(p) − 1}) = timb(p) − 2, we obtain a new composite effect
⟨timb(p) := timb(p)− 2⟩ to be added to the effect of a1,2. This effect reflects the
fact that, since both actions consume one unit of fuel, their sequential execution
results in the consumption of two units of fuel. Assembling all the elements
obtained, the action a1,2 has the following preconditions and effects:

pre(a1,2) ={⟨timb(p) ≥ 2⟩}
eff(a1,2) ={has-coal-stack(p), ⟨lab := lab+ 2⟩, ⟨timb(p) := timb− 2⟩,

⟨coal(p) := coal(p) + 1⟩, ⟨poll := poll + 1⟩}

5 Experimental Analysis

The experimental analysis aims to empirically assess the effectiveness of the
macros in the context of numeric planning. We evaluated the impact of using
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different types of reformulations—snf, dnf, and prop —compared to the origi-
nal version of the models, across four well-established numeric planners. We also
considered a fourth formulation, called all, in which we combined all macros
of different types. Regarding the numeric planning systems, to explore a variety
of methodologies, the following planners have been considered: enhsp [27], lpg
[12, 13], metric-ff [18], and optic [4]. All experiments run on an Intel Core
i9-10885H CPUs with 2.40GHz with a cutoff time of 900 seconds, and 8GB of
RAM.

Table 2 provides an overview of the results in terms of coverage, i.e., the num-
ber of problems solved, and IPC-Score calculated for the runtime, denoted as
IPC-Score(T). The IPC-Score for the runtime is calculated according to the met-
ric commonly used in the International Planning Competitions [29]. Specifically,
given a planning problem p in the test suite solved in t seconds, the IPC-Score(T)
of p is assigned to 1 if t ≤ 1, 1− log(t)/ log(900) otherwise.

As a first interesting result, it is easy to note that the effectiveness of macros
in improving planning performance varies widely. This is influenced by several
factors, including the type of macro employed, the characteristics of the domain,
and the planning system. For example, in the case of Depots, applying reformu-
lation techniques consistently proves beneficial for enhsp. When all macros are
utilised together in this domain, there is a notable increase in coverage, with six
additional instances being solved. Conversely, in the ZenoTravel domain, the
impact of macros is less favourable. Here, we observe a decrease in coverage for
both enhsp and lpg. This indicates that these macros in ZenoTravel might in-
troduce additional complexities to the problem, in the form of increased breadth,
that outweigh their potential benefits. However, for other systems within this do-
main, the coverage is unaffected.

In all other examined benchmark domains, the influence of macros on cover-
age is minimal, with only minimal fluctuations observed. These oscillations are
both positive and negative, indicating that the impact of macros is not uniformly
beneficial or detrimental but varies depending on the specific circumstances, as
observed in previous work on macros.

To clarify the mixed results, we measured the frequency with which macros
provided faster solutions compared to the original formulation. Figure 1 illus-
trates, for each planner, the proportion of instances where a specific type of
macro allows a planner to solve a problem instance faster. It is clear that enhsp
benefited the most from macros, especially with snf, prop, and all macros.
Other planners saw more modest, but still significant, improvements, with up
to 20% of instances being solved faster. Additionally, Figure 2 shows, for each
planner, the proportion of instances where any macro enabled a faster solution
than the original formulation, with results broken down by domain.

Overall, the performed analysis indicates that some planners are more prone
than others to exploit the potential benefits of macros in numeric planning prob-
lems. However, for all considered planners macros have been beneficial for solving
at least a few instances from the benchmarks. Turning our attention to the do-
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Table 2: Results about the macro reformulation versus the original formulation
(original) in terms of coverage and IPC-Score(T). na denotes the absence of
macros of the considered type.

Coverage IPC-Score(T)

Depots

original snf dnf prop all original snf dnf prop all

enhsp 8 11 11 10 14 5.0 4.6 4.9 4.5 5.2
lpg 20 20 20 20 20 18.8 15.5 18.2 17.3 12.8
metric-ff 0 0 0 0 0 0 0 0 0 0
optic 0 0 0 0 0 0 0 0 0 0

Σ 28 31 31 30 34 23.8 20.1 23.0 21.8 18.1

Rovers

original snf dnf prop all original snf dnf prop all

enhsp 0 0 na 0 0 0 0 na 0 0
lpg 19 19 na 19 20 17.0 17.7 na 17.5 17.7
metric-ff 0 0 na 0 0 0 0 na 0 0
optic 0 0 na 0 0 0 0 na 0 0

Σ 19 19 na 19 20 17.0 17.7 na 17.5 17.7

Settlers

original snf dnf prop all original snf dnf prop all

enhsp 0 0 0 na 0 0 0 0 na 0
lpg 0 0 0 na 0 0 0 0 na 0
metric-ff 7 4 8 na 5 4.5 3.3 4.5 na 2.8
optic 4 3 1 na 1 1.9 2.2 0.5 na 0.5

Σ 11 7 9 na 6 6.4 5.6 5.0 na 3.3

TPP

original snf dnf prop all original snf dnf prop all

enhsp 9 9 na na 9 7.2 7.2 na na 7.2
lpg 20 19 na na 19 20.0 13.0 na na 13.0
metric-ff 0 0 na na 0 0 0 na na 0
optic 20 20 na na 20 15.0 13.7 na na 13.7

Σ 49 48 na na 48 42.2 33.9 na na 33.9

ZenoTravel

original snf dnf prop all original snf dnf prop all

enhsp 19 na 17 na 17 17.1 na 13.5 na 13.5
lpg 20 na 15 na 15 19.7 na 14.5 na 14.5
metric-ff 20 na 20 na 20 19.8 na 16.8 na 16.8
optic 17 na 17 na 17 16.0 na 14.3 na 14.3

Σ 76 na 69 na 69 72.6 na 59.2 na 59.2

mains, ZenoTravel is not suitable for using macros, while most of the others
show significant benefits.

6 Conclusions

In this study, we conducted an extensive investigation into the use of macro-
actions in numeric planning. We formalised the macro generation process and
explored a semi-automated methodology for selecting candidate primitive actions
to be combined into macro-actions. Our experimental analysis demonstrates both
the potential benefits and drawbacks of using macros in numeric planning en-
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Fig. 1: Percentage of problems solved faster by a given planner when using the
original domain model (blue) or the corresponding macro set (orange). Results
are cumulative across all considered benchmarks.
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Fig. 2: Percentage of problems solved faster by a given planner when using the
original domain model (blue) or any corresponding macro set (orange) on each
considered benchmark domain.

gines. The results highlight that planners can respond very differently to domain
models enhanced with macro-actions, and that some domain models may not be
suitable for reformulation.

Future work will focus on identifying techniques for filtering and selecting
macros that are tailored to the needs of the planning system, to characterise
domain models suitable for macros reformulation, and explore the possibility to
generate macros by combining more primitive actions together.
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